Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jan 1;313(Pt 1):179–184. doi: 10.1042/bj3130179

Activation of human liver 3 alpha-hydroxysteroid dehydrogenase by sulphobromophthalein.

K Matsuura 1, Y Tamada 1, Y Deyashiki 1, Y Miyabe 1, M Nakanishi 1, I Ohya 1, A Hara 1
PMCID: PMC1216880  PMID: 8546681

Abstract

Human liver contains at least two isoenzymes (DD2 and DD4) of 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase. The NADP(H)-linked oxidoreductase activities of DD4 were activated more than 4-fold by sulphobromophthalein at concentrations above 20 microM and under physiological pH conditions. Sulphobromophthalein did not stimulate the activities of DD2 and human liver aldehyde reductase, which are functionally and/or structurally related to DD4. No stimulatory effect on the activity of DD4 was observed with other organic anions such as Indocyanine Green, haematin and Rose Bengal. The binding of sulphobromophthalein to DD4 was instantaneous and reversible, and was detected by fluorescence and ultrafiltration assays. The activation by sulphobromophthalein decreased the activation energy in the dehydrogenation reaction for the enzyme, and increased both kcat, and Km values for the coenzymes and substrates. Kinetic analyses with respect to concentrations of NADP+ and (S)-(+)-indan-1-ol indicated that sulphobromophthalein was a non-essential activator of mixed type showing a dissociation constant of 2.6 microM. Thus, the human 3 alpha-hydroxysteroid dehydrogenase isoenzyme has a binding site specific to sulphobromophthalein, and the hepatic metabolism mediated by this isoenzyme may be influenced when this drug is administered.

Full Text

The Full Text of this article is available as a PDF (484.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldini G., Passamonti S., Lunazzi G. C., Tiribelli C., Sottocasa G. L. Cellular localization of sulfobromophthalein transport activity in rat liver. Biochim Biophys Acta. 1986 Mar 27;856(1):1–10. doi: 10.1016/0005-2736(86)90002-7. [DOI] [PubMed] [Google Scholar]
  2. Binstock J. M., Iyer R. B., Hamby C. V., Fried V. A., Schwartz I. S., Weinstein B. I., Southren A. L. Human hepatic 3 alpha-hydroxysteroid dehydrogenase: possible identity with human hepatic chlordecone reductase. Biochem Biophys Res Commun. 1992 Sep 16;187(2):760–766. doi: 10.1016/0006-291x(92)91260-w. [DOI] [PubMed] [Google Scholar]
  3. Bohren K. M., Page J. L., Shankar R., Henry S. P., Gabbay K. H. Expression of human aldose and aldehyde reductases. Site-directed mutagenesis of a critical lysine 262. J Biol Chem. 1991 Dec 15;266(35):24031–24037. [PubMed] [Google Scholar]
  4. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
  5. Deyashiki Y., Ogasawara A., Nakayama T., Nakanishi M., Miyabe Y., Sato K., Hara A. Molecular cloning of two human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzymes that are identical with chlordecone reductase and bile-acid binder. Biochem J. 1994 Apr 15;299(Pt 2):545–552. doi: 10.1042/bj2990545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deyashiki Y., Ohshima K., Nakanishi M., Sato K., Matsuura K., Hara A. Molecular cloning and characterization of mouse estradiol 17 beta-dehydrogenase (A-specific), a member of the aldoketoreductase family. J Biol Chem. 1995 May 5;270(18):10461–10467. doi: 10.1074/jbc.270.18.10461. [DOI] [PubMed] [Google Scholar]
  7. Deyashiki Y., Tamada Y., Miyabe Y., Nakanishi M., Matsuura K., Hara A. Expression and kinetic properties of a recombinant 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzyme of human liver. J Biochem. 1995 Aug;118(2):285–290. doi: 10.1093/oxfordjournals.jbchem.a124904. [DOI] [PubMed] [Google Scholar]
  8. Deyashiki Y., Taniguchi H., Amano T., Nakayama T., Hara A., Sawada H. Structural and functional comparison of two human liver dihydrodiol dehydrogenases associated with 3 alpha-hydroxysteroid dehydrogenase activity. Biochem J. 1992 Mar 15;282(Pt 3):741–746. doi: 10.1042/bj2820741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hara A., Taniguchi H., Nakayama T., Sawada H. Purification and properties of multiple forms of dihydrodiol dehydrogenase from human liver. J Biochem. 1990 Aug;108(2):250–254. doi: 10.1093/oxfordjournals.jbchem.a123189. [DOI] [PubMed] [Google Scholar]
  10. Harrison D. H., Bohren K. M., Ringe D., Petsko G. A., Gabbay K. H. An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose 6-phosphate. Biochemistry. 1994 Mar 1;33(8):2011–2020. doi: 10.1021/bi00174a006. [DOI] [PubMed] [Google Scholar]
  11. Hoog S. S., Pawlowski J. E., Alzari P. M., Penning T. M., Lewis M. Three-dimensional structure of rat liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase: a member of the aldo-keto reductase superfamily. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2517–2521. doi: 10.1073/pnas.91.7.2517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jagt D. L., Wilson S. P., Dean V. L., Simons P. C. Bilirubin binding to rat liver ligandins (glutathione S-transferases A and B). Relationship between bilirubin binding and transferase activity. J Biol Chem. 1982 Feb 25;257(4):1997–2001. [PubMed] [Google Scholar]
  13. Mannervik B., Alin P., Guthenberg C., Jensson H., Tahir M. K., Warholm M., Jörnvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202–7206. doi: 10.1073/pnas.82.21.7202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ohara H., Miyabe Y., Deyashiki Y., Matsuura K., Hara A. Reduction of drug ketones by dihydrodiol dehydrogenases, carbonyl reductase and aldehyde reductase of human liver. Biochem Pharmacol. 1995 Jul 17;50(2):221–227. doi: 10.1016/0006-2952(95)00124-i. [DOI] [PubMed] [Google Scholar]
  15. Ohara H., Nakayama T., Deyashiki Y., Hara A., Miyabe Y., Tsukada F. Reduction of prostaglandin D2 to 9 alpha,11 beta-prostaglandin F2 by a human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isozyme. Biochim Biophys Acta. 1994 Nov 17;1215(1-2):59–65. doi: 10.1016/0005-2760(94)90091-4. [DOI] [PubMed] [Google Scholar]
  16. Pawlowski J. E., Huizinga M., Penning T. M. Cloning and sequencing of the cDNA for rat liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase. J Biol Chem. 1991 May 15;266(14):8820–8825. [PubMed] [Google Scholar]
  17. Pawlowski J. E., Penning T. M. Overexpression and mutagenesis of the cDNA for rat liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase. Role of cysteines and tyrosines in catalysis. J Biol Chem. 1994 May 6;269(18):13502–13510. [PubMed] [Google Scholar]
  18. Penning T. M., Smithgall T. E., Askonas L. J., Sharp R. B. Rat liver 3 alpha-hydroxysteroid dehydrogenase. Steroids. 1986 Apr-May;47(4-5):221–247. doi: 10.1016/0039-128x(86)90094-2. [DOI] [PubMed] [Google Scholar]
  19. Petrash J. M., Tarle I., Wilson D. K., Quiocho F. A. Aldose reductase catalysis and crystallography. Insights from recent advances in enzyme structure and function. Diabetes. 1994 Aug;43(8):955–959. doi: 10.2337/diab.43.8.955. [DOI] [PubMed] [Google Scholar]
  20. Qin K. N., New M. I., Cheng K. C. Molecular cloning of multiple cDNAs encoding human enzymes structurally related to 3 alpha-hydroxysteroid dehydrogenase. J Steroid Biochem Mol Biol. 1993 Dec;46(6):673–679. doi: 10.1016/0960-0760(93)90308-j. [DOI] [PubMed] [Google Scholar]
  21. Stolz A., Hammond L., Lou H., Takikawa H., Ronk M., Shively J. E. cDNA cloning and expression of the human hepatic bile acid-binding protein. A member of the monomeric reductase gene family. J Biol Chem. 1993 May 15;268(14):10448–10457. [PubMed] [Google Scholar]
  22. Stolz A., Takikawa H., Sugiyama Y., Kuhlenkamp J., Kaplowitz N. 3 alpha-hydroxysteroid dehydrogenase activity of the Y' bile acid binders in rat liver cytosol. Identification, kinetics, and physiologic significance. J Clin Invest. 1987 Feb;79(2):427–434. doi: 10.1172/JCI112829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sugiyama Y., Sugimoto M., Stolz A., Kaplowitz N. Comparison of the binding affinities of five forms of rat glutathione S-transferases for bilirubin, sulfobromophthalein and hematin. Biochem Pharmacol. 1984 Nov 1;33(21):3511–3513. doi: 10.1016/0006-2952(84)90128-x. [DOI] [PubMed] [Google Scholar]
  24. Sugiyama Y., Yamada T., Kaplowitz N. Newly identified bile acid binders in rat liver cytosol. Purification and comparison with glutathione S-transferases. J Biol Chem. 1983 Mar 25;258(6):3602–3607. [PubMed] [Google Scholar]
  25. Takikawa H., Arai S., Yamanaka M. Binding of bile acids, organic anions, and fatty acids by bovine intestinal Z protein. Arch Biochem Biophys. 1992 Jan;292(1):151–155. doi: 10.1016/0003-9861(92)90063-3. [DOI] [PubMed] [Google Scholar]
  26. Takikawa H., Fujiyoshi M., Nishikawa K., Yamanaka M. Purification of 3 alpha-hydroxysteroid and 3 beta-hydroxysteroid dehydrogenases from human liver cytosol. Hepatology. 1992 Aug;16(2):365–371. doi: 10.1002/hep.1840160214. [DOI] [PubMed] [Google Scholar]
  27. Takikawa H., Kaplowitz N. Binding of bile acids, oleic acid, and organic anions by rat and human hepatic Z protein. Arch Biochem Biophys. 1986 Nov 15;251(1):385–392. doi: 10.1016/0003-9861(86)90086-x. [DOI] [PubMed] [Google Scholar]
  28. Takikawa H., Stolz A., Sugiyama Y., Yoshida H., Yamanaka M., Kaplowitz N. Relationship between the newly identified bile acid binder and bile acid oxidoreductases in human liver. J Biol Chem. 1990 Feb 5;265(4):2132–2136. [PubMed] [Google Scholar]
  29. Takikawa H., Sugiyama Y., Stolz A., Sugimoto M., Kaplowitz N. Organic anion-binding by human hepatic GSH S-transferases. Biochem Pharmacol. 1986 Jan 15;35(2):354–356. doi: 10.1016/0006-2952(86)90540-x. [DOI] [PubMed] [Google Scholar]
  30. Tiribelli C., Lunazzi G. C., Sottocasa G. L. Biochemical and molecular aspects of the hepatic uptake of organic anions. Biochim Biophys Acta. 1990 Oct 8;1031(3):261–275. doi: 10.1016/0304-4157(90)90012-2. [DOI] [PubMed] [Google Scholar]
  31. Wilson D. K., Bohren K. M., Gabbay K. H., Quiocho F. A. An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science. 1992 Jul 3;257(5066):81–84. doi: 10.1126/science.1621098. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES