Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jan 1;313(Pt 1):215–222. doi: 10.1042/bj3130215

Sphingomyelinase stimulates 2-deoxyglucose uptake by skeletal muscle.

J Turinsky 1, G W Nagel 1, J S Elmendorf 1, A Damrau-Abney 1, T R Smith 1
PMCID: PMC1216885  PMID: 8546686

Abstract

The effects of sphingomyelinase, phosphorylcholine, N-acetylsphingosine (C2-ceramide), N-hexanoylsphingosine (C6-ceramide) and sphingosine on basal and insulin-stimulated cellular accumulation of 2-deoxy-D-glucose in rat soleus muscles were investigated. Preincubation of muscles with sphingomyelinase (100 or 200 m-units/ml) for 1 or 2 h augmented basal 2-deoxyglucose uptake by 29-91%, and that at 0.1 and 1.0 m-unit of insulin/ml 32-82% and 19-25% respectively compared with control muscles studied at the same insulin concentrations. The sphingomyelinase-induced increase in basal and insulin-stimulated 2-deoxyglucose uptake was inhibited by 91% by 70 microM cytochalasin B, suggesting that it involves glucose transporters. Sphingomyelinase had no effect on the cellular accumulation of L-glucose, which is not transported by glucose transporters. The sphingomyelinase-induced increase in 2-deoxyglucose uptake could not be reproduced by preincubating the muscles with 50 microM phosphorylcholine, 50 microM C2-ceramide or 50 microM C6-ceramide. Preincubation of muscles with 50 microM sphingosine augmented basal 2-deoxyglucose transport by 32%, but reduced the response to 0.1 and 1.0 m-unit of insulin/ml by 17 and 27% respectively. The stimulatory effect of sphingomyelinase on basal and insulin-induced 2-deoxyglucose uptake was not influenced by either removal of Ca2+ from the incubation medium or dantrolene, an inhibitor of Ca2+ release from the sarcoplasmic reticulum. This demonstrates that Ca2+ does not mediate the action of sphingomyelinase on 2-deoxyglucose uptake. Sphingomyelinase also had no effect on basal and insulin-stimulated activities of insulin receptor tyrosine kinase and phosphatidylinositol 3-kinase. In addition, 1 and 5 microM wortmannin, an inhibitor of phosphatidylinositol 3-kinase, failed to inhibit the sphingomyelinase-induced increase in 2-deoxyglucose uptake. These results suggest that sphingomyelinase does not increase 2-deoxyglucose uptake by stimulating the insulin receptor or the initial steps of the insulin-transduction pathway. The data suggest the possibility that sphingomyelinase increases basal and insulin-stimulated 2-deoxyglucose uptake in skeletal muscle as the result of an unknown post-receptor effect.

Full Text

The Full Text of this article is available as a PDF (367.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Cartee G. D., Douen A. G., Ramlal T., Klip A., Holloszy J. O. Stimulation of glucose transport in skeletal muscle by hypoxia. J Appl Physiol (1985) 1991 Apr;70(4):1593–1600. doi: 10.1152/jappl.1991.70.4.1593. [DOI] [PubMed] [Google Scholar]
  3. Clausen T., Elbrink J., Dahl-Hansen A. B. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. IX. The role of cellular calcium in the activation of the glucose transport system in rat soleus muscle. Biochim Biophys Acta. 1975 Jan 28;375(2):292–308. doi: 10.1016/0005-2736(75)90197-2. [DOI] [PubMed] [Google Scholar]
  4. Colbeau A., Nachbaur J., Vignais P. M. Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta. 1971 Dec 3;249(2):462–492. doi: 10.1016/0005-2736(71)90123-4. [DOI] [PubMed] [Google Scholar]
  5. Comte J., Maïsterrena B., Gautheron D. C. Lipid composition and protein profiles of outer and inner membranes from pig heart mitochondria. Comparison with microsomes. Biochim Biophys Acta. 1976 Jan 21;419(2):271–284. doi: 10.1016/0005-2736(76)90353-9. [DOI] [PubMed] [Google Scholar]
  6. Desmedt J. E., Hainaut K. Inhibition of the intracellular release of calcium by Dantrolene in barnacle giant muscle fibres. J Physiol. 1977 Feb;265(2):565–585. doi: 10.1113/jphysiol.1977.sp011731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dobrowsky R. T., Hannun Y. A. Ceramide stimulates a cytosolic protein phosphatase. J Biol Chem. 1992 Mar 15;267(8):5048–5051. [PubMed] [Google Scholar]
  8. Elmendorf J. S., Damrau-Abney A., Smith T. R., David T. S., Turinsky J. Insulin-stimulated phosphatidylinositol 3-kinase activity and 2-deoxy-D-glucose uptake in rat skeletal muscles. Biochem Biophys Res Commun. 1995 Mar 28;208(3):1147–1153. doi: 10.1006/bbrc.1995.1453. [DOI] [PubMed] [Google Scholar]
  9. Folli F., Saad M. J., Backer J. M., Kahn C. R. Insulin stimulation of phosphatidylinositol 3-kinase activity and association with insulin receptor substrate 1 in liver and muscle of the intact rat. J Biol Chem. 1992 Nov 5;267(31):22171–22177. [PubMed] [Google Scholar]
  10. Giorgetti S., Ballotti R., Kowalski-Chauvel A., Tartare S., Van Obberghen E. The insulin and insulin-like growth factor-I receptor substrate IRS-1 associates with and activates phosphatidylinositol 3-kinase in vitro. J Biol Chem. 1993 Apr 5;268(10):7358–7364. [PubMed] [Google Scholar]
  11. Goldkorn T., Dressler K. A., Muindi J., Radin N. S., Mendelsohn J., Menaldino D., Liotta D., Kolesnick R. N. Ceramide stimulates epidermal growth factor receptor phosphorylation in A431 human epidermoid carcinoma cells. Evidence that ceramide may mediate sphingosine action. J Biol Chem. 1991 Aug 25;266(24):16092–16097. [PubMed] [Google Scholar]
  12. Henriksen E. J., Rodnick K. J., Holloszy J. O. Activation of glucose transport in skeletal muscle by phospholipase C and phorbol ester. Evaluation of the regulatory roles of protein kinase C and calcium. J Biol Chem. 1989 Dec 25;264(36):21536–21543. [PubMed] [Google Scholar]
  13. Heydrick S. J., Jullien D., Gautier N., Tanti J. F., Giorgetti S., Van Obberghen E., Le Marchand-Brustel Y. Defect in skeletal muscle phosphatidylinositol-3-kinase in obese insulin-resistant mice. J Clin Invest. 1993 Apr;91(4):1358–1366. doi: 10.1172/JCI116337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holloszy J. O., Narahara H. T. Enhanced permeability to sugar associated with muscle contraction. Studies of the role of Ca++. J Gen Physiol. 1967 Jan;50(3):551–562. doi: 10.1085/jgp.50.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holloszy J. O., Narahara H. T. Nitrate ions: Potentiation of increased permeability to sugar associated with muscle contraction. Science. 1967 Feb 3;155(3762):573–575. doi: 10.1126/science.155.3762.573. [DOI] [PubMed] [Google Scholar]
  16. Jullien D., Tanti J. F., Heydrick S. J., Gautier N., Grémeaux T., Van Obberghen E., Le Marchand-Brustel Y. Differential effects of okadaic acid on insulin-stimulated glucose and amino acid uptake and phosphatidylinositol 3-kinase activity. J Biol Chem. 1993 Jul 15;268(20):15246–15251. [PubMed] [Google Scholar]
  17. Kahn C. R., White M. F., Shoelson S. E., Backer J. M., Araki E., Cheatham B., Csermely P., Folli F., Goldstein B. J., Huertas P. The insulin receptor and its substrate: molecular determinants of early events in insulin action. Recent Prog Horm Res. 1993;48:291–339. doi: 10.1016/b978-0-12-571148-7.50015-4. [DOI] [PubMed] [Google Scholar]
  18. Kao R. C., Wehner N. G., Skubitz K. M., Gray B. H., Hoidal J. R. Proteinase 3. A distinct human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters. J Clin Invest. 1988 Dec;82(6):1963–1973. doi: 10.1172/JCI113816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kim M. Y., Linardic C., Obeid L., Hannun Y. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. J Biol Chem. 1991 Jan 5;266(1):484–489. [PubMed] [Google Scholar]
  20. Kolesnick R. N. 1,2-Diacylglycerols but not phorbol esters stimulate sphingomyelin hydrolysis in GH3 pituitary cells. J Biol Chem. 1987 Dec 15;262(35):16759–16762. [PubMed] [Google Scholar]
  21. Kuo J. F., Dill I. K., Holmlund C. E. Comparison of the effects of Bacillus subtilis protease, type 8 (subtilopeptidase A), and insulin on isolated adipose cells. J Biol Chem. 1967 Aug 25;242(16):3659–3664. [PubMed] [Google Scholar]
  22. Mathias S., Younes A., Kan C. C., Orlow I., Joseph C., Kolesnick R. N. Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 beta. Science. 1993 Jan 22;259(5094):519–522. doi: 10.1126/science.8424175. [DOI] [PubMed] [Google Scholar]
  23. Nelson D. H., Murray D. K. Sphingolipids inhibit insulin and phorbol ester stimulated uptake of 2-deoxyglucose. Biochem Biophys Res Commun. 1986 Jul 16;138(1):463–467. doi: 10.1016/0006-291x(86)90303-7. [DOI] [PubMed] [Google Scholar]
  24. Okada T., Kawano Y., Sakakibara T., Hazeki O., Ui M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J Biol Chem. 1994 Feb 4;269(5):3568–3573. [PubMed] [Google Scholar]
  25. Okazaki T., Bell R. M., Hannun Y. A. Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem. 1989 Nov 15;264(32):19076–19080. [PubMed] [Google Scholar]
  26. Okazaki T., Bielawska A., Bell R. M., Hannun Y. A. Role of ceramide as a lipid mediator of 1 alpha,25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J Biol Chem. 1990 Sep 15;265(26):15823–15831. [PubMed] [Google Scholar]
  27. Olivera A., Buckley N. E., Spiegel S. Sphingomyelinase and cell-permeable ceramide analogs stimulate cellular proliferation in quiescent Swiss 3T3 fibroblasts. J Biol Chem. 1992 Dec 25;267(36):26121–26127. [PubMed] [Google Scholar]
  28. Preiss J. E., Loomis C. R., Bell R. M., Niedel J. E. Quantitative measurement of sn-1,2-diacylglycerols. Methods Enzymol. 1987;141:294–300. doi: 10.1016/0076-6879(87)41077-x. [DOI] [PubMed] [Google Scholar]
  29. Raines M. A., Kolesnick R. N., Golde D. W. Sphingomyelinase and ceramide activate mitogen-activated protein kinase in myeloid HL-60 cells. J Biol Chem. 1993 Jul 15;268(20):14572–14575. [PubMed] [Google Scholar]
  30. Robertson D. G., DiGirolamo M., Merrill A. H., Jr, Lambeth J. D. Insulin-stimulated hexose transport and glucose oxidation in rat adipocytes is inhibited by sphingosine at a step after insulin binding. J Biol Chem. 1989 Apr 25;264(12):6773–6779. [PubMed] [Google Scholar]
  31. Rosenwald A. G., Pagano R. E. Inhibition of glycoprotein traffic through the secretory pathway by ceramide. J Biol Chem. 1993 Mar 5;268(7):4577–4579. [PubMed] [Google Scholar]
  32. Ruderman N. B., Kapeller R., White M. F., Cantley L. C. Activation of phosphatidylinositol 3-kinase by insulin. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1411–1415. doi: 10.1073/pnas.87.4.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schroeder F., Perlmutter J. F., Glaser M., Vagelos P. R. Isolation and characterization of subcellular membranes with altered phospholipid composition from cultured fibroblasts. J Biol Chem. 1976 Aug 25;251(16):5015–5026. [PubMed] [Google Scholar]
  34. Serunian L. A., Auger K. R., Cantley L. C. Identification and quantification of polyphosphoinositides produced in response to platelet-derived growth factor stimulation. Methods Enzymol. 1991;198:78–87. doi: 10.1016/0076-6879(91)98010-4. [DOI] [PubMed] [Google Scholar]
  35. Slife C. W., Wang E., Hunter R., Wang S., Burgess C., Liotta D. C., Merrill A. H., Jr Free sphingosine formation from endogenous substrates by a liver plasma membrane system with a divalent cation dependence and a neutral pH optimum. J Biol Chem. 1989 Jun 25;264(18):10371–10377. [PubMed] [Google Scholar]
  36. Sowell M. O., Boggs K. P., Robinson K. A., Dutton S. L., Buse M. G. Effects of insulin and phospholipase C in control and denervated rat skeletal muscle. Am J Physiol. 1991 Feb;260(2 Pt 1):E247–E256. doi: 10.1152/ajpendo.1991.260.2.E247. [DOI] [PubMed] [Google Scholar]
  37. Turinsky J., Bayly B. P., O'Sullivan D. M. 1,2-Diacylglycerol and ceramide levels in rat liver and skeletal muscle in vivo. Am J Physiol. 1991 Nov;261(5 Pt 1):E620–E627. doi: 10.1152/ajpendo.1991.261.5.E620. [DOI] [PubMed] [Google Scholar]
  38. Turinsky J., Bayly B. P., O'Sullivan D. M. 1,2-Diacylglycerol and ceramide levels in rat skeletal muscle and liver in vivo. Studies with insulin, exercise, muscle denervation, and vasopressin. J Biol Chem. 1990 May 15;265(14):7933–7938. [PubMed] [Google Scholar]
  39. Turinsky J., O'Sullivan D. M., Bayly B. P. 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. J Biol Chem. 1990 Oct 5;265(28):16880–16885. [PubMed] [Google Scholar]
  40. Turinsky J., O'Sullivan D. M., Bayly B. P. Modulation of prostaglandin E2 synthesis in rat skeletal muscle. Am J Physiol. 1992 Apr;262(4 Pt 1):E476–E482. doi: 10.1152/ajpendo.1992.262.4.E476. [DOI] [PubMed] [Google Scholar]
  41. Weis L. S., Narahara H. T. Regulation of cell membrane permeability in skeletal muscle. I. Action of insulin and trypsin on the transport system for sugar. J Biol Chem. 1969 Jun 10;244(11):3084–3091. [PubMed] [Google Scholar]
  42. Yeh J. I., Gulve E. A., Rameh L., Birnbaum M. J. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. J Biol Chem. 1995 Feb 3;270(5):2107–2111. doi: 10.1074/jbc.270.5.2107. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES