Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jan 1;313(Pt 1):259–268. doi: 10.1042/bj3130259

Specific co-ordinated regulation of PC3 and PC2 gene expression with that of preproinsulin in insulin-producing beta TC3 cells.

G T Schuppin 1, C J Rhodes 1
PMCID: PMC1216892  PMID: 8546693

Abstract

Short-term (less than 2 h) glucose stimulation of isolated pancreatic islets specifically increases the biosynthesis of proinsulin and its converting enzymes PC2 and PC3 at the translation level. To determine whether gene expression of PC2 and PC3 was also regulated by longer-term (more than 6 h) glucose stimulation along with that of preproinsulin, studies were performed with the beta TC3 insulin-producing cell line. By Northern blot analysis, glucose maintained PC2 and PC3 mRNA levels in parallel with those of preproinsulin. After 48 h, mRNA levels of preproinsulin, PC2 and PC3 were, respectively, 2.9 (P < 0.05), 3.0 (P < 0.005) and 5.3 (P < 0.001) times greater in the presence of glucose than in beta TC3 cells cultured in the absence of glucose. Glucose-regulated PC2 and PC3 gene expression, like that of preproinsulin, was maximal at glucose concentrations above 5.5 mM. Studies of mRNA stability showed that the half-lives of PC2 (9 h) and PC3 (5 h) mRNA were much shorter than that of preproinsulin mRNA (over 24 h), but little effect of glucose on stability of these mRNAs was observed. Nuclear run-off analysis indicated that transcription of preproinsulin, PC2 and PC3 was modestly induced after 1 h exposure to 16.7 mM glucose. Therefore preproinsulin, PC2 and PC3 mRNA levels in beta TC3 cells were most probably maintained at the level of gene transcription. In contrast, elevation of cyclic AMP by forskolin had no effect on mRNA levels or gene transcription of preproinsulin, PC2 and PC3, despite a cyclic-AMP-induced phosphorylation of the cyclic AMP response element binding protein that correlated with a marked increase in cJun and cFos gene transcription in the same beta-cells. These results suggest that preproinsulin, PC2 and PC3 gene transcription can be specifically glucose-regulated in a mechanism that is unlikely to involve a key role for cyclic AMP. The co-ordinate increase in PC2 and PC3 mRNA levels with that of preproinsulin mRNA in response to chronic glucose represents a long-term means of catering for an increased demand on proinsulin conversion.

Full Text

The Full Text of this article is available as a PDF (882.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiello L. P., Robinson G. S., Lin Y. W., Nishio Y., King G. L. Identification of multiple genes in bovine retinal pericytes altered by exposure to elevated levels of glucose by using mRNA differential display. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6231–6235. doi: 10.1073/pnas.91.13.6231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alarcón C., Leahy J. L., Schuppin G. T., Rhodes C. J. Increased secretory demand rather than a defect in the proinsulin conversion mechanism causes hyperproinsulinemia in a glucose-infusion rat model of non-insulin-dependent diabetes mellitus. J Clin Invest. 1995 Mar;95(3):1032–1039. doi: 10.1172/JCI117748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alarcón C., Lincoln B., Rhodes C. J. The biosynthesis of the subtilisin-related proprotein convertase PC3, but no that of the PC2 convertase, is regulated by glucose in parallel to proinsulin biosynthesis in rat pancreatic islets. J Biol Chem. 1993 Feb 25;268(6):4276–4280. [PubMed] [Google Scholar]
  4. Benjannet S., Reudelhuber T., Mercure C., Rondeau N., Chrétien M., Seidah N. G. Proprotein conversion is determined by a multiplicity of factors including convertase processing, substrate specificity, and intracellular environment. Cell type-specific processing of human prorenin by the convertase PC1. J Biol Chem. 1992 Jun 5;267(16):11417–11423. [PubMed] [Google Scholar]
  5. Birch N. P., Tracer H. L., Hakes D. J., Loh Y. P. Coordinate regulation of mRNA levels of pro-opiomelanocortin and the candidate processing enzymes PC2 and PC3, but not furin, in rat pituitary intermediate lobe. Biochem Biophys Res Commun. 1991 Sep 30;179(3):1311–1319. doi: 10.1016/0006-291x(91)91716-p. [DOI] [PubMed] [Google Scholar]
  6. Bohmann D., Bos T. J., Admon A., Nishimura T., Vogt P. K., Tjian R. Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1. Science. 1987 Dec 4;238(4832):1386–1392. doi: 10.1126/science.2825349. [DOI] [PubMed] [Google Scholar]
  7. Borrelli E., Montmayeur J. P., Foulkes N. S., Sassone-Corsi P. Signal transduction and gene control: the cAMP pathway. Crit Rev Oncog. 1992;3(4):321–338. [PubMed] [Google Scholar]
  8. Brunstedt J., Chan S. J. Direct effect of glucose on the preproinsulin mRNA level in isolated pancreatic islets. Biochem Biophys Res Commun. 1982 Jun 30;106(4):1383–1389. doi: 10.1016/0006-291x(82)91267-0. [DOI] [PubMed] [Google Scholar]
  9. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  10. Davidson H. W., Rhodes C. J., Hutton J. C. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature. 1988 May 5;333(6168):93–96. doi: 10.1038/333093a0. [DOI] [PubMed] [Google Scholar]
  11. Docherty K., Clark A. R. Nutrient regulation of insulin gene expression. FASEB J. 1994 Jan;8(1):20–27. doi: 10.1096/fasebj.8.1.8299887. [DOI] [PubMed] [Google Scholar]
  12. Efrat S., Linde S., Kofod H., Spector D., Delannoy M., Grant S., Hanahan D., Baekkeskov S. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9037–9041. doi: 10.1073/pnas.85.23.9037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Efrat S., Surana M., Fleischer N. Glucose induces insulin gene transcription in a murine pancreatic beta-cell line. J Biol Chem. 1991 Jun 15;266(17):11141–11143. [PubMed] [Google Scholar]
  14. Ftouhi N., Day R., Mbikay M., Chrétien M., Seidah N. G. Gene organization of the mouse pro-hormone and pro-protein convertase PC1. DNA Cell Biol. 1994 Apr;13(4):395–407. doi: 10.1089/dna.1994.13.395. [DOI] [PubMed] [Google Scholar]
  15. German M. S., Moss L. G., Rutter W. J. Regulation of insulin gene expression by glucose and calcium in transfected primary islet cultures. J Biol Chem. 1990 Dec 25;265(36):22063–22066. [PubMed] [Google Scholar]
  16. Giddings S. J., Chirgwin J., Permutt M. A. Effects of glucose on proinsulin messenger RNA in rats in vivo. Diabetes. 1982 Jul;31(7):624–629. doi: 10.2337/diab.31.7.624. [DOI] [PubMed] [Google Scholar]
  17. Giddings S. J., Chirgwin J., Permutt M. A. The effects of fasting and feeding on preproinsulin messenger RNA in rats. J Clin Invest. 1981 Apr;67(4):952–960. doi: 10.1172/JCI110145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ginty D. D., Kornhauser J. M., Thompson M. A., Bading H., Mayo K. E., Takahashi J. S., Greenberg M. E. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science. 1993 Apr 9;260(5105):238–241. doi: 10.1126/science.8097062. [DOI] [PubMed] [Google Scholar]
  19. Goodison S., Kenna S., Ashcroft S. J. Control of insulin gene expression by glucose. Biochem J. 1992 Jul 15;285(Pt 2):563–568. doi: 10.1042/bj2850563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Halban P. A., Irminger J. C. Sorting and processing of secretory proteins. Biochem J. 1994 Apr 1;299(Pt 1):1–18. doi: 10.1042/bj2990001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hammonds P., Schofield P. N., Ashcroft S. J., Sutton R., Gray D. W. Regulation and specificity of glucose-stimulated insulin gene expression in human islets of Langerhans. FEBS Lett. 1987 Oct 19;223(1):131–137. doi: 10.1016/0014-5793(87)80523-9. [DOI] [PubMed] [Google Scholar]
  22. Hanabusa T., Ohagi S., LaMendola J., Chan S. J., Steiner D. F. Nucleotide sequence and analysis of the mouse SPC3 promoter region. FEBS Lett. 1994 Dec 19;356(2-3):339–341. doi: 10.1016/0014-5793(94)01285-7. [DOI] [PubMed] [Google Scholar]
  23. Hellqvist L. N., Rhodes C. J., Taylor K. W. Long-term biochemical changes in the islets of Langerhans in mice following infection with encephalomyocarditis virus. Diabetologia. 1984 May;26(5):370–374. doi: 10.1007/BF00266039. [DOI] [PubMed] [Google Scholar]
  24. Hutton J. C. Insulin secretory granule biogenesis and the proinsulin-processing endopeptidases. Diabetologia. 1994 Sep;37 (Suppl 2):S48–S56. doi: 10.1007/BF00400826. [DOI] [PubMed] [Google Scholar]
  25. Inagaki N., Maekawa T., Sudo T., Ishii S., Seino Y., Imura H. c-Jun represses the human insulin promoter activity that depends on multiple cAMP response elements. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1045–1049. doi: 10.1073/pnas.89.3.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Itoh N., Okamoto H. Translational control of proinsulin synthesis by glucose. Nature. 1980 Jan 3;283(5742):100–102. doi: 10.1038/283100a0. [DOI] [PubMed] [Google Scholar]
  27. Izenwasser S., Côté T. E. Inhibition of adenylyl cyclase activity by a homogeneous population of dopamine receptors: selective blockade by antisera directed against Gi1 and/or Gi2. J Neurochem. 1995 Apr;64(4):1614–1621. doi: 10.1046/j.1471-4159.1995.64041614.x. [DOI] [PubMed] [Google Scholar]
  28. Kraus J., Höllt V. Identification of a cAMP-response element on the human proopiomelanocortin gene upstream promoter. DNA Cell Biol. 1995 Feb;14(2):103–110. doi: 10.1089/dna.1995.14.103. [DOI] [PubMed] [Google Scholar]
  29. MacFarlane W. M., Read M. L., Gilligan M., Bujalska I., Docherty K. Glucose modulates the binding activity of the beta-cell transcription factor IUF1 in a phosphorylation-dependent manner. Biochem J. 1994 Oct 15;303(Pt 2):625–631. doi: 10.1042/bj3030625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Martin S. K., Carroll R., Benig M., Steiner D. F. Regulation by glucose of the biosynthesis of PC2, PC3 and proinsulin in (ob/ob) mouse islets of Langerhans. FEBS Lett. 1994 Dec 19;356(2-3):279–282. doi: 10.1016/0014-5793(94)01284-9. [DOI] [PubMed] [Google Scholar]
  31. Meyer T. E., Habener J. F. Cyclic adenosine 3',5'-monophosphate response element binding protein (CREB) and related transcription-activating deoxyribonucleic acid-binding proteins. Endocr Rev. 1993 Jun;14(3):269–290. doi: 10.1210/edrv-14-3-269. [DOI] [PubMed] [Google Scholar]
  32. Nagamatsu S., Steiner D. F. Altered glucose regulation of insulin biosynthesis in insulinoma cells: mouse beta TC3 cells secrete insulin-related peptides predominantly via a constitutive pathway. Endocrinology. 1992 Feb;130(2):748–754. doi: 10.1210/endo.130.2.1733723. [DOI] [PubMed] [Google Scholar]
  33. Nagamune H., Muramatsu K., Akamatsu T., Tamai Y., Izumi K., Tsuji A., Matsuda Y. Distribution of the Kexin family proteases in pancreatic islets: PACE4C is specifically expressed in B cells of pancreatic islets. Endocrinology. 1995 Jan;136(1):357–360. doi: 10.1210/endo.136.1.7828552. [DOI] [PubMed] [Google Scholar]
  34. Neerman-Arbez M., Cirulli V., Halban P. A. Levels of the conversion endoproteases PC1 (PC3) and PC2 distinguish between insulin-producing pancreatic islet beta cells and non-beta cells. Biochem J. 1994 May 15;300(Pt 1):57–61. doi: 10.1042/bj3000057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Neerman-Arbez M., Sizonenko S. V., Halban P. A. Slow cleavage at the proinsulin B-chain/connecting peptide junction associated with low levels of endoprotease PC1/3 in transformed beta cells. J Biol Chem. 1993 Aug 5;268(22):16098–16100. [PubMed] [Google Scholar]
  36. Nielsen D. A., Welsh M., Casadaban M. J., Steiner D. F. Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. I. Effects of glucose and cyclic AMP on the transcription of insulin mRNA. J Biol Chem. 1985 Nov 5;260(25):13585–13589. [PubMed] [Google Scholar]
  37. Ohagi S., LaMendola J., LeBeau M. M., Espinosa R., 3rd, Takeda J., Smeekens S. P., Chan S. J., Steiner D. F. Identification and analysis of the gene encoding human PC2, a prohormone convertase expressed in neuroendocrine tissues. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4977–4981. doi: 10.1073/pnas.89.11.4977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Orci L. The insulin factory: a tour of the plant surroundings and a visit to the assembly line. The Minkowski lecture 1973 revisited. Diabetologia. 1985 Aug;28(8):528–546. doi: 10.1007/BF00281987. [DOI] [PubMed] [Google Scholar]
  39. Permutt M. A., Kakita K., Malinas P., Karl I., Bonner-Weir S., Weir G., Giddings S. J. An in vivo analysis of pancreatic protein and insulin biosynthesis in a rat model for non-insulin-dependent diabetes. J Clin Invest. 1984 May;73(5):1344–1350. doi: 10.1172/JCI111337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Philippe J., Missotten M. Functional characterization of a cAMP-responsive element of the rat insulin I gene. J Biol Chem. 1990 Jan 25;265(3):1465–1469. [PubMed] [Google Scholar]
  41. Philippe J., Pacheco I., Meda P. Insulin gene transcription is decreased rapidly by lowering glucose concentrations in rat islet cells. Diabetes. 1994 Apr;43(4):523–528. doi: 10.2337/diab.43.4.523. [DOI] [PubMed] [Google Scholar]
  42. Redmon J. B., Towle H. C., Robertson R. P. Regulation of human insulin gene transcription by glucose, epinephrine, and somatostatin. Diabetes. 1994 Apr;43(4):546–551. doi: 10.2337/diab.43.4.546. [DOI] [PubMed] [Google Scholar]
  43. Redpath N. T., Proud C. G. Molecular mechanisms in the control of translation by hormones and growth factors. Biochim Biophys Acta. 1994 Jan 13;1220(2):147–162. doi: 10.1016/0167-4889(94)90130-9. [DOI] [PubMed] [Google Scholar]
  44. Rhodes C. J., Alarcón C. What beta-cell defect could lead to hyperproinsulinemia in NIDDM? Some clues from recent advances made in understanding the proinsulin-processing mechanism. Diabetes. 1994 Apr;43(4):511–517. doi: 10.2337/diab.43.4.511. [DOI] [PubMed] [Google Scholar]
  45. Shalwitz R. A., Herbst T., Carnaghi L. R., Giddings S. J. Time course for effects of hypoglycemia on insulin gene transcription in vivo. Diabetes. 1994 Jul;43(7):929–934. doi: 10.2337/diab.43.7.929. [DOI] [PubMed] [Google Scholar]
  46. Sharp G. W. The adenylate cyclase-cyclic AMP system in islets of Langerhans and its role in the control of insulin release. Diabetologia. 1979 May;16(5):287–296. doi: 10.1007/BF01223617. [DOI] [PubMed] [Google Scholar]
  47. Steiner D. F., Smeekens S. P., Ohagi S., Chan S. J. The new enzymology of precursor processing endoproteases. J Biol Chem. 1992 Nov 25;267(33):23435–23438. [PubMed] [Google Scholar]
  48. Welsh M., Nielsen D. A., MacKrell A. J., Steiner D. F. Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. II. Regulation of insulin mRNA stability. J Biol Chem. 1985 Nov 5;260(25):13590–13594. [PubMed] [Google Scholar]
  49. Welsh M., Scherberg N., Gilmore R., Steiner D. F. Translational control of insulin biosynthesis. Evidence for regulation of elongation, initiation and signal-recognition-particle-mediated translational arrest by glucose. Biochem J. 1986 Apr 15;235(2):459–467. doi: 10.1042/bj2350459. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES