Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jan 1;313(Pt 1):327–334. doi: 10.1042/bj3130327

The specificity of mitochondrial complex I for ubiquinones.

M Degli Esposti 1, A Ngo 1, G L McMullen 1, A Ghelli 1, F Sparla 1, B Benelli 1, M Ratta 1, A W Linnane 1
PMCID: PMC1216902  PMID: 8546703

Abstract

We report the first detailed study on the ubiquinone (coenzyme Q; abbreviated to Q) analogue specificity of mitochondrial complex I, NADH:Q reductase, in intact submitochondrial particles. The enzymic function of complex I has been investigated using a series of analogues of Q as electron acceptor substrates for both electron transport activity and the associated generation of membrane potential. Q analogues with a saturated substituent of one to three carbons at position 6 of the 2,3-dimethoxy-5-methyl-1,4-benzoquinone ring have the fastest rates of electron transport activity, and analogues with a substituent of seven to nine carbon atoms have the highest values of association constant derived from NADH:Q reductase activity. The rate of NADH:Q reductase activity is potently but incompletely inhibited by rotenone, and the residual rotenone-insensitive rate is stimulated by Q analogues in different ways depending on the hydrophobicity of their substituent. Membrane potential measurements have been undertaken to evaluate the energetic efficiency of complex I with various Q analogues. Only hydrophobic analogues such as nonyl-Q or undecyl-Q show an efficiency of membrane potential generation equivalent to that of endogenous Q. The less hydrophobic analogues as well as the isoprenoid analogue Q-2 are more efficient as substrates for the redox activity of complex I than for membrane potential generation. Thus the hydrophilic Q analogues act also as electron sinks and interact incompletely with the physiological Q site in complex I that pumps protons and generates membrane potential.

Full Text

The Full Text of this article is available as a PDF (695.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bashford C. L., Smith J. C. The use of optical probes to monitor membrane potential. Methods Enzymol. 1979;55:569–586. doi: 10.1016/0076-6879(79)55067-8. [DOI] [PubMed] [Google Scholar]
  2. Braun B. S., Benbow U., Lloyd-Williams P., Bruce J. M., Dutton P. L. Determination of partition coefficients of quinones by high-performance liquid chromatography. Methods Enzymol. 1986;125:119–129. doi: 10.1016/s0076-6879(86)25011-9. [DOI] [PubMed] [Google Scholar]
  3. Chung K. H., Cho K. Y., Asami Y., Takahashi N., Yoshida S. New 4-hydroxypyridine and 4-hydroxyquinoline derivatives as inhibitors of NADH-ubiquinone reductase in the respiratory chain. Z Naturforsch C. 1989 Jul-Aug;44(7-8):609–616. doi: 10.1515/znc-1989-7-811. [DOI] [PubMed] [Google Scholar]
  4. De Jong A. M., Albracht S. P. Ubisemiquinones as obligatory intermediates in the electron transfer from NADH to ubiquinone. Eur J Biochem. 1994 Jun 15;222(3):975–982. doi: 10.1111/j.1432-1033.1994.tb18948.x. [DOI] [PubMed] [Google Scholar]
  5. Degli Esposti M., Crimi M., Ghelli A. Natural variation in the potency and binding sites of mitochondrial quinone-like inhibitors. Biochem Soc Trans. 1994 Feb;22(1):209–213. doi: 10.1042/bst0220209. [DOI] [PubMed] [Google Scholar]
  6. Degli Esposti M., Ghelli A., Crimi M., Estornell E., Fato R., Lenaz G. Complex I and complex III of mitochondria have common inhibitors acting as ubiquinone antagonists. Biochem Biophys Res Commun. 1993 Feb 15;190(3):1090–1096. doi: 10.1006/bbrc.1993.1161. [DOI] [PubMed] [Google Scholar]
  7. Degli Esposti M., Ghelli A., Ratta M., Cortes D., Estornell E. Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (Complex I). Biochem J. 1994 Jul 1;301(Pt 1):161–167. doi: 10.1042/bj3010161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Degli Esposti M., Ghelli A. The mechanism of proton and electron transport in mitochondrial complex I. Biochim Biophys Acta. 1994 Aug 30;1187(2):116–120. doi: 10.1016/0005-2728(94)90095-7. [DOI] [PubMed] [Google Scholar]
  9. Di Virgilio F., Azzone G. F. Activation of site I redox-driven H+ pump by exogenous quinones in intact mitochondria. J Biol Chem. 1982 Apr 25;257(8):4106–4113. [PubMed] [Google Scholar]
  10. Ernster L., Lee I. Y., Norling B., Persson B. Studies with ubiquinone-depleted submitochondrial particles. Essentiality of ubiquinone for the interaction of succinate dehydrogenase, NADH dehydrogenase, and cytochrome b. Eur J Biochem. 1969 Jun;9(3):299–310. doi: 10.1111/j.1432-1033.1969.tb00609.x. [DOI] [PubMed] [Google Scholar]
  11. Esposti M. D., Lenaz G. The kinetic mechanism of ubiquinol: cytochrome c reductase at steady state. Arch Biochem Biophys. 1991 Sep;289(2):303–312. doi: 10.1016/0003-9861(91)90415-f. [DOI] [PubMed] [Google Scholar]
  12. Estornell E., Fato R., Pallotti F., Lenaz G. Assay conditions for the mitochondrial NADH:coenzyme Q oxidoreductase. FEBS Lett. 1993 Oct 11;332(1-2):127–131. doi: 10.1016/0014-5793(93)80498-j. [DOI] [PubMed] [Google Scholar]
  13. Friedrich T., van Heek P., Leif H., Ohnishi T., Forche E., Kunze B., Jansen R., Trowitzsch-Kienast W., Höfle G., Reichenbach H. Two binding sites of inhibitors in NADH: ubiquinone oxidoreductase (complex I). Relationship of one site with the ubiquinone-binding site of bacterial glucose:ubiquinone oxidoreductase. Eur J Biochem. 1994 Jan 15;219(1-2):691–698. doi: 10.1111/j.1432-1033.1994.tb19985.x. [DOI] [PubMed] [Google Scholar]
  14. Gluck M. R., Krueger M. J., Ramsay R. R., Sablin S. O., Singer T. P., Nicklas W. J. Characterization of the inhibitory mechanism of 1-methyl-4-phenylpyridinium and 4-phenylpyridine analogs in inner membrane preparations. J Biol Chem. 1994 Feb 4;269(5):3167–3174. [PubMed] [Google Scholar]
  15. Gutman M. Electron flux through the mitochondrial ubiquinone. Biochim Biophys Acta. 1980 Dec 22;594(1):53–84. doi: 10.1016/0304-4173(80)90013-0. [DOI] [PubMed] [Google Scholar]
  16. Gutman M., Singer T. P., Casida J. E. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XVII. Reaction sites of piericidin A and rotenone. J Biol Chem. 1970 Apr 25;245(8):1992–1997. [PubMed] [Google Scholar]
  17. HATEFI Y., HAAVIK A. G., GRIFFITHS D. E. Studies on the electron transfer system. XL. Preparation and properties of mitochondrial DPNH-coenzyme Q reductase. J Biol Chem. 1962 May;237:1676–1680. [PubMed] [Google Scholar]
  18. Harding A. E., Holt I. J., Cooper J. M., Schapira A. H., Sweeney M., Clark J. B., Morgan-Hughes J. A. Mitochondrial myopathies: genetic defects. Biochem Soc Trans. 1990 Aug;18(4):519–522. doi: 10.1042/bst0180519. [DOI] [PubMed] [Google Scholar]
  19. Heinrich H., Werner S. Identification of the ubiquinone-binding site of NADH:ubiquinone oxidoreductase (complex I) from Neurospora crassa. Biochemistry. 1992 Nov 24;31(46):11413–11419. doi: 10.1021/bi00161a020. [DOI] [PubMed] [Google Scholar]
  20. Hollingworth R. M., Ahammadsahib K. I., Gadelhak G., McLaughlin J. L. New inhibitors of complex I of the mitochondrial electron transport chain with activity as pesticides. Biochem Soc Trans. 1994 Feb;22(1):230–233. doi: 10.1042/bst0220230. [DOI] [PubMed] [Google Scholar]
  21. Horgan D. J., Ohno H., Singer T. P. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XV. Interactions of piericidin with the mitochondrial respiratory chain. J Biol Chem. 1968 Nov 25;243(22):5967–5976. [PubMed] [Google Scholar]
  22. Jewess P. J. Insecticides and acaricides which act at the rotenone-binding site of mitochondrial NADH:ubiquinone oxidoreductase; competitive displacement studies using a 3H-labelled rotenone analogue. Biochem Soc Trans. 1994 Feb;22(1):247–251. doi: 10.1042/bst0220247. [DOI] [PubMed] [Google Scholar]
  23. Kotlyar A. B., Sled V. D., Burbaev D. S., Moroz I. A., Vinogradov A. D. Coupling site I and the rotenone-sensitive ubisemiquinone in tightly coupled submitochondrial particles. FEBS Lett. 1990 May 7;264(1):17–20. doi: 10.1016/0014-5793(90)80753-6. [DOI] [PubMed] [Google Scholar]
  24. Kotlyar A. B., Vinogradov A. D. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Biochim Biophys Acta. 1990 Aug 30;1019(2):151–158. doi: 10.1016/0005-2728(90)90137-s. [DOI] [PubMed] [Google Scholar]
  25. Krishnamoorthy G., Hinkle P. C. Studies on the electron transfer pathway, topography of iron-sulfur centers, and site of coupling in NADH-Q oxidoreductase. J Biol Chem. 1988 Nov 25;263(33):17566–17575. [PubMed] [Google Scholar]
  26. Ksenzenko M., Konstantinov A. A., Khomutov G. B., Tikhonov A. N., Ruuge E. K. Effect of electron transfer inhibitors on superoxide generation in the cytochrome bc1 site of the mitochondrial respiratory chain. FEBS Lett. 1983 May 2;155(1):19–24. doi: 10.1016/0014-5793(83)80200-2. [DOI] [PubMed] [Google Scholar]
  27. Lawford H. G., Garland P. B. Proton translocation coupled to quinone reduction by reduced nicotinamide--adenine dinucleotide in rat liver and ox heart mitochondria. Biochem J. 1972 Dec;130(4):1029–1044. doi: 10.1042/bj1301029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lenaz G., Daves G. D., Jr, Kfolkers K. Organic structural specificity and sites of coenzyme Q in succinoxidase and DPNH-oxidase systems. Arch Biochem Biophys. 1968 Mar 11;123(3):539–550. doi: 10.1016/0003-9861(68)90175-6. [DOI] [PubMed] [Google Scholar]
  29. Linnane A. W., Degli Esposti M., Generowicz M., Luff A. R., Nagley P. The universality of bioenergetic disease and amelioration with redox therapy. Biochim Biophys Acta. 1995 May 24;1271(1):191–194. doi: 10.1016/0925-4439(95)00027-2. [DOI] [PubMed] [Google Scholar]
  30. Oettmeier W., Masson K., Soll M. The acridones, new inhibitors of mitochondrial NADH: ubiquinone oxidoreductase (complex I). Biochim Biophys Acta. 1992 Mar 13;1099(3):262–266. doi: 10.1016/0005-2728(92)90036-2. [DOI] [PubMed] [Google Scholar]
  31. Ohnishi T. NADH-quinone oxidoreductase, the most complex complex. J Bioenerg Biomembr. 1993 Aug;25(4):325–329. doi: 10.1007/BF00762457. [DOI] [PubMed] [Google Scholar]
  32. Ragan C. I., Hinkle P. C. Ion transport and respiratory control in vesicles formed from reduced nicotinamide adenine dinucleotide coenzyme Q reductase and phospholipids. J Biol Chem. 1975 Nov 10;250(21):8472–8476. [PubMed] [Google Scholar]
  33. Ragan C. I. The role of phospholipids in the reduction of ubiquinone analogues by the mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase complex. Biochem J. 1978 Jun 15;172(3):539–547. doi: 10.1042/bj1720539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ramsay R. R., Krueger M. J., Youngster S. K., Singer T. P. Evidence that the inhibition sites of the neurotoxic amine 1-methyl-4-phenylpyridinium (MPP+) and of the respiratory chain inhibitor piericidin A are the same. Biochem J. 1991 Jan 15;273(Pt 2):481–484. doi: 10.1042/bj2730481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ramsay R. R., Singer T. P. Relation of superoxide generation and lipid peroxidation to the inhibition of NADH-Q oxidoreductase by rotenone, piericidin A, and MPP+. Biochem Biophys Res Commun. 1992 Nov 30;189(1):47–52. doi: 10.1016/0006-291x(92)91523-s. [DOI] [PubMed] [Google Scholar]
  36. Ruzicka F. J., Crane F. L. Quinone interaction with the respiratory chain-linked NADH dehydrogenase of beef heart mitochondria. II. Duroquinone reductase activity. Biochim Biophys Acta. 1971 Mar 2;226(2):221–233. doi: 10.1016/0005-2728(71)90089-2. [DOI] [PubMed] [Google Scholar]
  37. Ruzicka F. J., Crane F. L. Quinone interaction with the respiratory chain-linked NADH dehydrogenase of beef heart mitochondria. Biochim Biophys Acta. 1970 Nov 3;223(1):71–85. doi: 10.1016/0005-2728(70)90133-7. [DOI] [PubMed] [Google Scholar]
  38. Schapira A. H. Evidence for mitochondrial dysfunction in Parkinson's disease--a critical appraisal. Mov Disord. 1994 Mar;9(2):125–138. doi: 10.1002/mds.870090202. [DOI] [PubMed] [Google Scholar]
  39. Schatz G., Racker E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. VII. Oxidative phosphorylation in the diphosphopyridine nucleotide-cytochrome b segment of the respiratory chain: assay and properties in submitochondrial particles. J Biol Chem. 1966 Mar 25;241(6):1429–1438. [PubMed] [Google Scholar]
  40. Shimomura Y., Kawada T., Suzuki M. Capsaicin and its analogs inhibit the activity of NADH-coenzyme Q oxidoreductase of the mitochondrial respiratory chain. Arch Biochem Biophys. 1989 May 1;270(2):573–577. doi: 10.1016/0003-9861(89)90539-0. [DOI] [PubMed] [Google Scholar]
  41. Singer T. P. Mitochondrial electron-transport inhibitors. Methods Enzymol. 1979;55:454–462. doi: 10.1016/0076-6879(79)55059-9. [DOI] [PubMed] [Google Scholar]
  42. Smith J. C. Potential-sensitive molecular probes in membranes of bioenergetic relevance. Biochim Biophys Acta. 1990 Mar 15;1016(1):1–28. doi: 10.1016/0005-2728(90)90002-l. [DOI] [PubMed] [Google Scholar]
  43. Suzuki H., King T. E. Evidence of an ubisemiquinone radical(s) from the NADH-ubiquinone reductase of the mitochondrial respiratory chain. J Biol Chem. 1983 Jan 10;258(1):352–358. [PubMed] [Google Scholar]
  44. Tan A. K., Ramsay R. R., Singer T. P., Miyoshi H. Comparison of the structures of the quinone-binding sites in beef heart mitochondria. J Biol Chem. 1993 Sep 15;268(26):19328–19333. [PubMed] [Google Scholar]
  45. Tripathy B. C., Rieske J. S. Antimycin-resistant alternate electron pathway to plastocyanin in bovine-heart complex III. J Bioenerg Biomembr. 1985 Jun;17(3):141–150. doi: 10.1007/BF00751058. [DOI] [PubMed] [Google Scholar]
  46. Turrens J. F., Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980 Nov 1;191(2):421–427. doi: 10.1042/bj1910421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Vinogradov A. D. Kinetics, control, and mechanism of ubiquinone reduction by the mammalian respiratory chain-linked NADH-ubiquinone reductase. J Bioenerg Biomembr. 1993 Aug;25(4):367–375. doi: 10.1007/BF00762462. [DOI] [PubMed] [Google Scholar]
  48. Walker J. E. The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys. 1992 Aug;25(3):253–324. doi: 10.1017/s003358350000425x. [DOI] [PubMed] [Google Scholar]
  49. Wan Y. P., Williams R. H., Folkers K., Leung K. H., Racker E. Low molecular weight analogs of coenzyme Q as hydrogen acceptors and donors in systems of the respiratory chain. Biochem Biophys Res Commun. 1975 Mar 3;63(1):11–15. doi: 10.1016/s0006-291x(75)80003-9. [DOI] [PubMed] [Google Scholar]
  50. Weiss H., Friedrich T. Redox-linked proton translocation by NADH-ubiquinone reductase (complex I). J Bioenerg Biomembr. 1991 Oct;23(5):743–754. doi: 10.1007/BF00785999. [DOI] [PubMed] [Google Scholar]
  51. Yagi T. Inhibition by capsaicin of NADH-quinone oxidoreductases is correlated with the presence of energy-coupling site 1 in various organisms. Arch Biochem Biophys. 1990 Sep;281(2):305–311. doi: 10.1016/0003-9861(90)90448-8. [DOI] [PubMed] [Google Scholar]
  52. Yu C. A., Gu L. Q., Lin Y. Z., Yu L. Effect of alkyl side chain variation on the electron-transfer activity of ubiquinone derivatives. Biochemistry. 1985 Jul 16;24(15):3897–3902. doi: 10.1021/bi00336a013. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES