Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jan 15;313(Pt 2):391–399. doi: 10.1042/bj3130391

Blocking intracellular degradation of the erythropoietin and asialoglycoprotein receptors by calpain inhibitors does not result in the same increase in the levels of their membrane and secreted forms.

D Neumann 1, M H Yuk 1, H F Lodish 1, G Z Lederkremer 1
PMCID: PMC1216921  PMID: 8573070

Abstract

The erythropoietin receptor (EPO-R), a type 1 membrane glycoprotein, is degraded mainly in the lysosomes or endosomes, whereas the asialoglycoprotein receptor (ASGP-R) H2a subunit, a type 2 membrane glycoprotein, is degraded exclusively in the endoplasmic reticulum. The present study describes compounds that inhibit the intracellular degradation of these receptors in an efficient manner. However, the levels of cell-surface expression and secretion of their soluble exoplasmic domains were not enhanced to the same extent. The calpain inhibitors N-acetyl-leucyl-leucyl-norleucinal (ALLN) and N-acetyl-leucyl-leucyl-methional (ALLM) inhibited EPO-R degradation profoundly. After 3 h of chase using Ba/F3 cells and NIH 3T3 fibroblasts expressing the EPO-R, virtually all of the receptor molecules were degraded, whereas 80% of the pulse-labelled receptor remained intact in the presence of the inhibitor. EPO-R cell-surface expression was elevated 1.5-fold after 1 h of incubation with ALLN. In the absence of protein synthesis, ALLN caused the accumulation of non-degraded EPO-R molecules in endosomes and lysosomes, as determined by double immunofluorescence labelling of NIH 3T3 cells expressing EPO-Rs. In Ba/F3 cells expressing a soluble EPO-R, ALLN treatment increased secretion of the soluble exoplasmic domain of the EPO-R 2-5-fold. Similarly, in NIH 3T3 cells singly transfected with the ASGP-R H2a subunit cDNA, ALLN inhibited degradation of the ASGP-R H2a subunit precursor, as well as the degradation of the 35 kDa proteolytic fragment corresponding to the receptor ectodomain, by 3-6-fold. However, accumulation of secreted proteolytic fragment in the medium was augmented in the presence of ALLN by only 1.75-fold. In cells expressing the G78R mutant of the ASGP-R H2a subunit, which is not cleaved to the 35 kDa fragment [Yuk and Lodish (1993) J. Cell Biol. 123, 1735-1749], degradation of the precursor was inhibited. Overall, our data suggest the involvement of cysteine proteinases located in the endoplasmic reticulum, as well as in post-Golgi compartments, in degradation of the EPO-R and the ASGP-R H2a subunit. The much lower effect of the inhibitory compounds on cell-surface and secreted forms of the EPO-R and ASGP-R H2a subunit illustrates the complexity and the tight regulation of the cellular localization and stability of membrane proteins.

Full Text

The Full Text of this article is available as a PDF (589.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adeli K. Regulated intracellular degradation of apolipoprotein B in semipermeable HepG2 cells. J Biol Chem. 1994 Mar 25;269(12):9166–9175. [PubMed] [Google Scholar]
  2. Amara J. F., Lederkremer G., Lodish H. F. Intracellular degradation of unassembled asialoglycoprotein receptor subunits: a pre-Golgi, nonlysosomal endoproteolytic cleavage. J Cell Biol. 1989 Dec;109(6 Pt 2):3315–3324. doi: 10.1083/jcb.109.6.3315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amitay R., Shachar I., Rabinovich E., Haimovich J., Bar-Nun S. Degradation of secretory immunoglobulin M in B lymphocytes occurs in a postendoplasmic reticulum compartment and is mediated by a cysteine protease. J Biol Chem. 1992 Oct 15;267(29):20694–20700. [PubMed] [Google Scholar]
  4. Barber D. L., D'Andrea A. D. The erythropoietin receptor and the molecular basis of signal transduction. Semin Hematol. 1992 Oct;29(4):293–304. [PubMed] [Google Scholar]
  5. Bonifacino J. S., Cosson P., Shah N., Klausner R. D. Role of potentially charged transmembrane residues in targeting proteins for retention and degradation within the endoplasmic reticulum. EMBO J. 1991 Oct;10(10):2783–2793. doi: 10.1002/j.1460-2075.1991.tb07827.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chun K. T., Bar-Nun S., Simoni R. D. The regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase requires a short-lived protein and occurs in the endoplasmic reticulum. J Biol Chem. 1990 Dec 15;265(35):22004–22010. [PubMed] [Google Scholar]
  7. Contreras M. A., Bale W. F., Spar I. L. Iodine monochloride (IC1) iodination techniques. Methods Enzymol. 1983;92:277–292. [PubMed] [Google Scholar]
  8. Croall D. E., DeMartino G. N. Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev. 1991 Jul;71(3):813–847. doi: 10.1152/physrev.1991.71.3.813. [DOI] [PubMed] [Google Scholar]
  9. D'Andrea A. D., Lodish H. F., Wong G. G. Expression cloning of the murine erythropoietin receptor. Cell. 1989 Apr 21;57(2):277–285. doi: 10.1016/0092-8674(89)90965-3. [DOI] [PubMed] [Google Scholar]
  10. Figueiredo-Pereira M. E., Banik N., Wilk S. Comparison of the effect of calpain inhibitors on two extralysosomal proteinases: the multicatalytic proteinase complex and m-calpain. J Neurochem. 1994 May;62(5):1989–1994. doi: 10.1046/j.1471-4159.1994.62051989.x. [DOI] [PubMed] [Google Scholar]
  11. Helenius A., Marquardt T., Braakman I. The endoplasmic reticulum as a protein-folding compartment. Trends Cell Biol. 1992 Aug;2(8):227–231. doi: 10.1016/0962-8924(92)90309-b. [DOI] [PubMed] [Google Scholar]
  12. Hiwasa T., Sawada T., Sakiyama S. Cysteine proteinase inhibitors and ras gene products share the same biological activities including transforming activity toward NIH3T3 mouse fibroblasts and the differentiation-inducing activity toward PC12 rat pheochromocytoma cells. Carcinogenesis. 1990 Jan;11(1):75–80. doi: 10.1093/carcin/11.1.75. [DOI] [PubMed] [Google Scholar]
  13. Inoue S., Bar-Nun S., Roitelman J., Simoni R. D. Inhibition of degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in vivo by cysteine protease inhibitors. J Biol Chem. 1991 Jul 15;266(20):13311–13317. [PubMed] [Google Scholar]
  14. Inoue S., Simoni R. D. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase and T cell receptor alpha subunit are differentially degraded in the endoplasmic reticulum. J Biol Chem. 1992 May 5;267(13):9080–9086. [PubMed] [Google Scholar]
  15. Klausner R. D., Sitia R. Protein degradation in the endoplasmic reticulum. Cell. 1990 Aug 24;62(4):611–614. doi: 10.1016/0092-8674(90)90104-m. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Li J. P., D'Andrea A. D., Lodish H. F., Baltimore D. Activation of cell growth by binding of Friend spleen focus-forming virus gp55 glycoprotein to the erythropoietin receptor. Nature. 1990 Feb 22;343(6260):762–764. doi: 10.1038/343762a0. [DOI] [PubMed] [Google Scholar]
  18. Lodish H. F. Recognition of complex oligosaccharides by the multi-subunit asialoglycoprotein receptor. Trends Biochem Sci. 1991 Oct;16(10):374–377. doi: 10.1016/0968-0004(91)90154-n. [DOI] [PubMed] [Google Scholar]
  19. Mayeux P., Pallu S., Gobert S., Lacombe C., Gisselbrecht S. Structure of the erythropoietin receptor. Proc Soc Exp Biol Med. 1994 Jul;206(3):200–204. doi: 10.3181/00379727-206-43742. [DOI] [PubMed] [Google Scholar]
  20. Neumann D., Wikström L., Watowich S. S., Lodish H. F. Intermediates in degradation of the erythropoietin receptor accumulate and are degraded in lysosomes. J Biol Chem. 1993 Jun 25;268(18):13639–13649. [PubMed] [Google Scholar]
  21. Rabinowitz S., Horstmann H., Gordon S., Griffiths G. Immunocytochemical characterization of the endocytic and phagolysosomal compartments in peritoneal macrophages. J Cell Biol. 1992 Jan;116(1):95–112. doi: 10.1083/jcb.116.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rock K. L., Gramm C., Rothstein L., Clark K., Stein R., Dick L., Hwang D., Goldberg A. L. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell. 1994 Sep 9;78(5):761–771. doi: 10.1016/s0092-8674(94)90462-6. [DOI] [PubMed] [Google Scholar]
  23. Roitelman J., Olender E. H., Bar-Nun S., Dunn W. A., Jr, Simoni R. D. Immunological evidence for eight spans in the membrane domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase: implications for enzyme degradation in the endoplasmic reticulum. J Cell Biol. 1992 Jun;117(5):959–973. doi: 10.1083/jcb.117.5.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sakata N., Wu X., Dixon J. L., Ginsberg H. N. Proteolysis and lipid-facilitated translocation are distinct but competitive processes that regulate secretion of apolipoprotein B in Hep G2 cells. J Biol Chem. 1993 Nov 5;268(31):22967–22970. [PubMed] [Google Scholar]
  25. Sandoval I. V., Bakke O. Targeting of membrane proteins to endosomes and lysosomes. Trends Cell Biol. 1994 Aug;4(8):292–297. doi: 10.1016/0962-8924(94)90220-8. [DOI] [PubMed] [Google Scholar]
  26. Shin J., Lee S., Strominger J. L. Translocation of TCR alpha chains into the lumen of the endoplasmic reticulum and their degradation. Science. 1993 Mar 26;259(5103):1901–1904. doi: 10.1126/science.8456316. [DOI] [PubMed] [Google Scholar]
  27. Sorkin A., Waters C. M. Endocytosis of growth factor receptors. Bioessays. 1993 Jun;15(6):375–382. doi: 10.1002/bies.950150603. [DOI] [PubMed] [Google Scholar]
  28. Spiess M. The asialoglycoprotein receptor: a model for endocytic transport receptors. Biochemistry. 1990 Oct 30;29(43):10009–10018. doi: 10.1021/bi00495a001. [DOI] [PubMed] [Google Scholar]
  29. Urade R., Takenaka Y., Kito M. Protein degradation by ERp72 from rat and mouse liver endoplasmic reticulum. J Biol Chem. 1993 Oct 15;268(29):22004–22009. [PubMed] [Google Scholar]
  30. Wikström L., Lodish H. F. Nonlysosomal, pre-Golgi degradation of unassembled asialoglycoprotein receptor subunits: a TLCK- and TPCK-sensitive cleavage within the ER. J Cell Biol. 1991 Jun;113(5):997–1007. doi: 10.1083/jcb.113.5.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wikström L., Lodish H. F. Unfolded H2b asialoglycoprotein receptor subunit polypeptides are selectively degraded within the endoplasmic reticulum. J Biol Chem. 1993 Jul 5;268(19):14412–14416. [PubMed] [Google Scholar]
  32. Wileman T., Kane L. P., Terhorst C. Degradation of T-cell receptor chains in the endoplasmic reticulum is inhibited by inhibitors of cysteine proteases. Cell Regul. 1991 Sep;2(9):753–765. doi: 10.1091/mbc.2.9.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ye S. Q., Reardon C. A., Getz G. S. Inhibition of apolipoprotein E degradation in a post-Golgi compartment by a cysteine protease inhibitor. J Biol Chem. 1993 Apr 25;268(12):8497–8502. [PubMed] [Google Scholar]
  34. Yoshimura A., D'Andrea A. D., Lodish H. F. Friend spleen focus-forming virus glycoprotein gp55 interacts with the erythropoietin receptor in the endoplasmic reticulum and affects receptor metabolism. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4139–4143. doi: 10.1073/pnas.87.11.4139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Youssoufian H., Longmore G., Neumann D., Yoshimura A., Lodish H. F. Structure, function, and activation of the erythropoietin receptor. Blood. 1993 May 1;81(9):2223–2236. [PubMed] [Google Scholar]
  36. Yuk M. H., Lodish H. F. Two pathways for the degradation of the H2 subunit of the asialoglycoprotein receptor in the endoplasmic reticulum. J Cell Biol. 1993 Dec;123(6 Pt 2):1735–1749. doi: 10.1083/jcb.123.6.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES