Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jan 15;313(Pt 2):409–414. doi: 10.1042/bj3130409

Phosphorylation of recombinant human phenylalanine hydroxylase: effect on catalytic activity, substrate activation and protection against non-specific cleavage of the fusion protein by restriction protease.

A P Døskeland 1, A Martinez 1, P M Knappskog 1, T Flatmark 1
PMCID: PMC1216923  PMID: 8573072

Abstract

The phosphorylation of human phenylalanine hydroxylase by cyclic AMP-dependent protein kinase was studied using recombinant enzyme expressed as a fusion protein in the pMAL system of Escherichia coli. Using the target sequence of the restriction protease enterokinase (Asp4-Lys) as the linker peptide, 100% full-length human phenylalanine hydroxylase was obtained on protease cleavage. The fusion protein and human phenylalanine hydroxylase were both phosphorylated at Ser-16 with a stoichiometry of 1 mol of Pi/mol of subunit. The rate of phosphorylation of human phenylalanine hydroxylase was inhibited about 40% by the cofactor tetrahydrobiopterin, and this inhibition was completely prevented by the simultaneous presence of L-phenylalanine (i.e. at turnover conditions). Phosphorylated enzyme revealed a 1.6-fold higher specific activity than the non-phosphorylated enzyme form, and it also required a lower concentration of L-Phe for substrate activation. Pre-incubation with L-Phe increased the specific activity of phenylalanine hydroxylase 2- to 4-fold, L-Phe acting with positive cooperativity. Thus, the basic catalytic and regulatory properties of recombinant human phenylalanine hydroxylase, as well as those observed for the enzyme as a fusion protein, are similar to those previously reported for the rat liver enzyme. When the target sequence of the restriction protease factor Xa (Ile-Glu-Gly-Arg) was used as the linker between maltose-binding protein and human phenylalanine hydroxylase, cleavage of the fusion protein gave a mixture of full-length hydroxylase and a truncated form of the enzyme lacking the 13 N-terminal residues. Interestingly, phosphorylation of the fusion protein, before exposure to factor Xa, almost completely protected against secondary cleavage by this restriction protease at Arg-13 of phenylalanine hydroxylase.

Full Text

The Full Text of this article is available as a PDF (394.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abita J. P., Blandin-Savoja F., Rey F. Phenylalanine 4-monooxygenase from human liver. Methods Enzymol. 1987;142:27–35. doi: 10.1016/s0076-6879(87)42005-3. [DOI] [PubMed] [Google Scholar]
  2. Abita J. P., Milstien S., Chang N., Kaufman S. In vitro activation of rat liver phenylalanine hydroxylase by phosphorylation. J Biol Chem. 1976 Sep 10;251(17):5310–5314. [PubMed] [Google Scholar]
  3. Abita J. P., Parniak M., Kaufman S. The activation of rat liver phenylalanine hydroxylase by limited proteolysis, lysolecithin, and tocopherol phosphate. Changes in conformation and catalytic properties. J Biol Chem. 1984 Dec 10;259(23):14560–14566. [PubMed] [Google Scholar]
  4. Bailey S. W., Ayling J. E. 6,6-Dimethylpterins: stable quinoid dihydropterin substrate for dihydropteridine reductase and tetrahydropterin cofactor for phenylalanine hydroxylase. Biochemistry. 1983 Apr 12;22(8):1790–1798. doi: 10.1021/bi00277a008. [DOI] [PubMed] [Google Scholar]
  5. Citron B. A., Davis M. D., Kaufman S. Electrostatic activation of rat phenylalanine hydroxylase. Biochem Biophys Res Commun. 1994 Jan 14;198(1):174–180. doi: 10.1006/bbrc.1994.1025. [DOI] [PubMed] [Google Scholar]
  6. Donlon J., Kaufman S. Relationship between the multiple forms of rat hepatic phenylalanine hydroxylase and degree of phosphorylation. J Biol Chem. 1980 Mar 10;255(5):2146–2152. [PubMed] [Google Scholar]
  7. Døskeland A. P., Døskeland S. O., Flatmark T. Phenylalanine 4-monooxygenase from bovine liver. Methods Enzymol. 1987;142:35–44. doi: 10.1016/s0076-6879(87)42006-5. [DOI] [PubMed] [Google Scholar]
  8. Døskeland A. P., Døskeland S. O., Ogreid D., Flatmark T. The effect of ligands of phenylalanine 4-monooxygenase on the cAMP-dependent phosphorylation of the enzyme. J Biol Chem. 1984 Sep 25;259(18):11242–11248. [PubMed] [Google Scholar]
  9. Døskeland A. P., Haavik J., Flatmark T., Døskeland S. O. Modulation by pterins of the phosphorylation and phenylalanine activation of phenylalanine 4-mono-oxygenase. Biochem J. 1987 Mar 15;242(3):867–874. doi: 10.1042/bj2420867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Døskeland A. P., Schworer C. M., Døskeland S. O., Chrisman T. D., Soderling T. R., Corbin J. D., Flatmark T. Some aspects of the phosphorylation of phenylalanine 4-monooxygenase by a calcium-dependent and calmodulin-dependent protein kinase. Eur J Biochem. 1984 Nov 15;145(1):31–37. doi: 10.1111/j.1432-1033.1984.tb08518.x. [DOI] [PubMed] [Google Scholar]
  11. Døskeland A. P., Vintermyr O. K., Flatmark T., Cotton R. G., Døskeland S. O. Phenylalanine positively modulates the cAMP-dependent phosphorylation and negatively modulates the vasopressin-induced and okadaic-acid-induced phosphorylation of phenylalanine 4-monooxygenase in intact rat hepatocytes. Eur J Biochem. 1992 May 15;206(1):161–170. doi: 10.1111/j.1432-1033.1992.tb16913.x. [DOI] [PubMed] [Google Scholar]
  12. Døskeland A., Ljones T., Skotland T., Flatmark T. Phenylalanine 4-monooxygenase from bovine and rat liver: some physical and chemical properties. Neurochem Res. 1982 Apr;7(4):407–421. doi: 10.1007/BF00965494. [DOI] [PubMed] [Google Scholar]
  13. Gardella T. J., Rubin D., Abou-Samra A. B., Keutmann H. T., Potts J. T., Jr, Kronenberg H. M., Nussbaum S. R. Expression of human parathyroid hormone-(1-84) in Escherichia coli as a factor X-cleavable fusion protein. J Biol Chem. 1990 Sep 15;265(26):15854–15859. [PubMed] [Google Scholar]
  14. Haavik J., Døskeland A. P., Flatmark T. Stereoselective effects in the interactions of pterin cofactors with rat-liver phenylalanine 4-monooxygenase. Eur J Biochem. 1986 Oct 1;160(1):1–8. doi: 10.1111/j.1432-1033.1986.tb09932.x. [DOI] [PubMed] [Google Scholar]
  15. Iwaki M., Phillips R. S., Kaufman S. Proteolytic modification of the amino-terminal and carboxyl-terminal regions of rat hepatic phenylalanine hydroxylase. J Biol Chem. 1986 Feb 15;261(5):2051–2056. [PubMed] [Google Scholar]
  16. Kaufman S. Regulation of the activity of hepatic phenylalanine hydroxylase. Adv Enzyme Regul. 1986;25:37–64. doi: 10.1016/0065-2571(86)90007-5. [DOI] [PubMed] [Google Scholar]
  17. Kaufman S. The phenylalanine hydroxylating system. Adv Enzymol Relat Areas Mol Biol. 1993;67:77–264. doi: 10.1002/9780470123133.ch2. [DOI] [PubMed] [Google Scholar]
  18. Knack I., Röhm K. H. Microcomputers in enzymology. A versatile BASIC computer program for analyzing kinetic data. Hoppe Seylers Z Physiol Chem. 1981 Aug;362(8):1119–1130. doi: 10.1515/bchm2.1981.362.2.1119. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Ledley F. D., Grenett H. E., Dunbar B. S., Woo S. L. Mouse phenylalanine hydroxylase. Homology and divergence from human phenylalanine hydroxylase. Biochem J. 1990 Apr 15;267(2):399–405. doi: 10.1042/bj2670399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martinez A., Knappskog P. M., Olafsdottir S., Døskeland A. P., Eiken H. G., Svebak R. M., Bozzini M., Apold J., Flatmark T. Expression of recombinant human phenylalanine hydroxylase as fusion protein in Escherichia coli circumvents proteolytic degradation by host cell proteases. Isolation and characterization of the wild-type enzyme. Biochem J. 1995 Mar 1;306(Pt 2):589–597. doi: 10.1042/bj3060589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nagai K., Thøgersen H. C. Generation of beta-globin by sequence-specific proteolysis of a hybrid protein produced in Escherichia coli. 1984 Jun 28-Jul 4Nature. 309(5971):810–812. doi: 10.1038/309810a0. [DOI] [PubMed] [Google Scholar]
  23. Nagai K., Thøgersen H. C. Synthesis and sequence-specific proteolysis of hybrid proteins produced in Escherichia coli. Methods Enzymol. 1987;153:461–481. doi: 10.1016/0076-6879(87)53072-5. [DOI] [PubMed] [Google Scholar]
  24. Parniak M., Hasegawa H., Wilgus H., Kaufman S. On the phosphate content of rat liver phenylalanine hydroxylase purified by hydrophobic chromatography. Biochem Biophys Res Commun. 1981 Mar 31;99(2):707–714. doi: 10.1016/0006-291x(81)91801-5. [DOI] [PubMed] [Google Scholar]
  25. Phillips R. S., Kaufman S. Ligand effects on the phosphorylation state of hepatic phenylalanine hydroxylase. J Biol Chem. 1984 Feb 25;259(4):2474–2479. [PubMed] [Google Scholar]
  26. Phillips R. S., Parniak M. A., Kaufman S. Spectroscopic investigation of ligand interaction with hepatic phenylalanine hydroxylase: evidence for a conformational change associated with activation. Biochemistry. 1984 Aug 14;23(17):3836–3842. doi: 10.1021/bi00312a007. [DOI] [PubMed] [Google Scholar]
  27. Roskoski R., Jr Assays of protein kinase. Methods Enzymol. 1983;99:3–6. doi: 10.1016/0076-6879(83)99034-1. [DOI] [PubMed] [Google Scholar]
  28. Shiman R., Gray D. W., Pater A. A simple purification of phenylalanine hydroxylase by substrate-induced hydrophobic chromatography. J Biol Chem. 1979 Nov 25;254(22):11300–11306. [PubMed] [Google Scholar]
  29. Smith S. C., Kemp B. E., McAdam W. J., Mercer J. F., Cotton R. G. Two apparent molecular weight forms of human and monkey phenylalanine hydroxylase are due to phosphorylation. J Biol Chem. 1984 Sep 25;259(18):11284–11289. [PubMed] [Google Scholar]
  30. Smith S. C., McAdam W. J., Kemp B. E., Morgan F. J., Cotton R. G. A monoclonal antibody to the phosphorylated form of phenylalanine hydroxylase. Definition of the phosphopeptide epitope. Biochem J. 1987 Jun 15;244(3):625–631. doi: 10.1042/bj2440625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wearne S. J. Factor Xa cleavage of fusion proteins. Elimination of non-specific cleavage by reversible acylation. FEBS Lett. 1990 Apr 9;263(1):23–26. doi: 10.1016/0014-5793(90)80696-g. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES