Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jan 15;313(Pt 2):455–466. doi: 10.1042/bj3130455

Antigenicity and conformational analysis of the Zn(2+)-binding sites of two Zn(2+)-metalloproteases: Leishmania gp63 and mammalian endopeptidase-24.11.

K P Soteriadou 1, A K Tzinia 1, E Panou-Pamonis 1, V Tsikaris 1, M Sakarellos-Daitsiotis 1, C Sakarellos 1, Y Papapoulou 1, R Matsas 1
PMCID: PMC1216929  PMID: 8573078

Abstract

The antigenic properties of the Zn(2+)-binding region of two Zn(2+)-metalloproteases, Leishmania surface protease gp63 and mammalian endopeptidase-24.11 (E-24.11), possessing in their active site the characteristic amino acid sequence HEXXH, were investigated by using oligoclonal antibodies raised against two synthetic peptides, V1VTHEMAHALG11 (pepgp63) and V1IGHEITHGFD11 (pepE-24.11), containing the respective Zn(2+)-binding sites of the cognate protein. The affinity-purified antibodies, tested on synthetic peptides modelled from the active sites of ten different Zn(2+)-metalloproteases, showed high selectivity for their respective peptides. However, cross-reactivity was revealed when the antibodies were tested against the gp63 and E-24.11 molecules. A panel of synthetic peptide analogues and peptides of various size was synthesized and used for the fine antigenic characterization of pepgp63 and pepE-24.11. The shortest peptides capable of significant antibody binding were the pentapeptides V1VTHE5 and E5ITHG9 for pepgp63 and pepE-24.11 respectively. His4 and Glu5 were found to be indispensable for anti-pepgp63 binding to pepgp63, whereas in the case of pepE-24.11, Glu5 and His8 were found to be critical. The conformational characteristics of the two peptides correlate well with the observed differences in their antigenicity. 1H-NMR studies showed that pepgp63 adopts a folded structure whereas pepE-24.11 takes up a rather flexible conformation. Moreover, the antigenically critical His4 of pepgp63 contributes to the structural stabilization of the peptide. Similarly, the antigenically critical His8 of pepE-24.11 is involved in partial structural stabilization of its C-terminal region. The generated antibodies may be useful tools for identifying and classifying proteins possessing similar Zn(2+)-binding motifs and/or environments.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anchordoguy T. J., Cecchini C. A., Crowe J. H., Crowe L. M. Insights into the cryoprotective mechanism of dimethyl sulfoxide for phospholipid bilayers. Cryobiology. 1991 Oct;28(5):467–473. doi: 10.1016/0011-2240(91)90056-t. [DOI] [PubMed] [Google Scholar]
  2. Aubry M., Zollinger M., Fortin S., Vénien C., LeGrimellec C., Crine P. Monoclonal antibodies as probes for the transmembrane structure of neutral endopeptidase 24.11 ('enkephalinase'). Biochim Biophys Acta. 1988 Oct 13;967(1):56–64. doi: 10.1016/0304-4165(88)90188-2. [DOI] [PubMed] [Google Scholar]
  3. Benedetti E., Morelli G., Némethy G., Scheraga H. A. Statistical and energetic analysis of side-chain conformations in oligopeptides. Int J Pept Protein Res. 1983 Jul;22(1):1–15. doi: 10.1111/j.1399-3011.1983.tb02062.x. [DOI] [PubMed] [Google Scholar]
  4. Billeter M., Braun W., Wüthrich K. Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra. Computation of sterically allowed proton-proton distances and statistical analysis of proton-proton distances in single crystal protein conformations. J Mol Biol. 1982 Mar 5;155(3):321–346. doi: 10.1016/0022-2836(82)90008-0. [DOI] [PubMed] [Google Scholar]
  5. Bode W., Gomis-Rüth F. X., Stöckler W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the 'metzincins'. FEBS Lett. 1993 Sep 27;331(1-2):134–140. doi: 10.1016/0014-5793(93)80312-i. [DOI] [PubMed] [Google Scholar]
  6. Bordier C. The promastigote surface protease of Leishmania. Parasitol Today. 1987 May;3(5):151–153. doi: 10.1016/0169-4758(87)90199-2. [DOI] [PubMed] [Google Scholar]
  7. Bouvier J., Bordier C., Vogel H., Reichelt R., Etges R. Characterization of the promastigote surface protease of Leishmania as a membrane-bound zinc endopeptidase. Mol Biochem Parasitol. 1989 Dec;37(2):235–245. doi: 10.1016/0166-6851(89)90155-2. [DOI] [PubMed] [Google Scholar]
  8. Button L. L., McMaster W. R. Molecular cloning of the major surface antigen of leishmania. J Exp Med. 1988 Feb 1;167(2):724–729. doi: 10.1084/jem.167.2.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chaudhuri G., Chaudhuri M., Pan A., Chang K. P. Surface acid proteinase (gp63) of Leishmania mexicana. A metalloenzyme capable of protecting liposome-encapsulated proteins from phagolysosomal degradation by macrophages. J Biol Chem. 1989 May 5;264(13):7483–7489. [PubMed] [Google Scholar]
  10. Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
  11. Connelly J. C., Skidgel R. A., Schulz W. W., Johnson A. R., Erdös E. G. Neutral endopeptidase 24.11 in human neutrophils: cleavage of chemotactic peptide. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8737–8741. doi: 10.1073/pnas.82.24.8737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cung M. T., Tsikaris V., Demange P., Papadouli I., Tzartos S. J., Sakarellos C., Marraud M. 2D-NMR and molecular dynamics analysis of the Torpedo californica acetylcholine receptor alpha 67-76 fragment and of its [Ala76]-analogue. Pept Res. 1992 Jan-Feb;5(1):14–24. [PubMed] [Google Scholar]
  13. Devault A., Sales V., Nault C., Beaumont A., Roques B., Crine P., Boileau G. Exploration of the catalytic site of endopeptidase 24.11 by site-directed mutagenesis. Histidine residues 583 and 587 are essential for catalysis. FEBS Lett. 1988 Apr 11;231(1):54–58. doi: 10.1016/0014-5793(88)80701-4. [DOI] [PubMed] [Google Scholar]
  14. Dwyer D. M. Isolation and partial characterization of surface membranes from Leishmania donovani promastigotes. J Protozool. 1980 May;27(2):176–182. doi: 10.1111/j.1550-7408.1980.tb04676.x. [DOI] [PubMed] [Google Scholar]
  15. Ebina S., Wüthrich K. Amide proton titration shifts in bull seminal inhibitor IIA by two-dimensional correlated 1H nuclear magnetic resonance (COSY). Manifestation of conformational equilibria involving carboxylate groups. J Mol Biol. 1984 Oct 25;179(2):283–288. doi: 10.1016/0022-2836(84)90469-8. [DOI] [PubMed] [Google Scholar]
  16. Erdös E. G., Skidgel R. A. Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones. FASEB J. 1989 Feb;3(2):145–151. [PubMed] [Google Scholar]
  17. Etges R., Bouvier J., Bordier C. The major surface protein of Leishmania promastigotes is a protease. J Biol Chem. 1986 Jul 15;261(20):9098–9101. [PubMed] [Google Scholar]
  18. Frommel T. O., Button L. L., Fujikura Y., McMaster W. R. The major surface glycoprotein (GP63) is present in both life stages of Leishmania. Mol Biochem Parasitol. 1990 Jan 1;38(1):25–32. doi: 10.1016/0166-6851(90)90201-v. [DOI] [PubMed] [Google Scholar]
  19. Gee N. S., Matsas R., Kenny A. J. A monoclonal antibody to kidney endopeptidase-24.11. Its application in immunoadsorbent purification of the enzyme and immunofluorescent microscopy of kidney and intestine. Biochem J. 1983 Aug 15;214(2):377–386. doi: 10.1042/bj2140377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Geysen H. M., Meloen R. H., Barteling S. J. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3998–4002. doi: 10.1073/pnas.81.13.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hooper N. M. Families of zinc metalloproteases. FEBS Lett. 1994 Oct 31;354(1):1–6. doi: 10.1016/0014-5793(94)01079-x. [DOI] [PubMed] [Google Scholar]
  22. Jiang W., Bond J. S. Families of metalloendopeptidases and their relationships. FEBS Lett. 1992 Nov 9;312(2-3):110–114. doi: 10.1016/0014-5793(92)80916-5. [DOI] [PubMed] [Google Scholar]
  23. Jongeneel C. V., Bouvier J., Bairoch A. A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett. 1989 Jan 2;242(2):211–214. doi: 10.1016/0014-5793(89)80471-5. [DOI] [PubMed] [Google Scholar]
  24. Kaiser E., Colescott R. L., Bossinger C. D., Cook P. I. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem. 1970 Apr;34(2):595–598. doi: 10.1016/0003-2697(70)90146-6. [DOI] [PubMed] [Google Scholar]
  25. Kioussi C., Crine P., Matsas R. Endopeptidase-24.11 is suppressed in myelin-forming but not in non-myelin-forming Schwann cells during development of the rat sciatic nerve. Neuroscience. 1992 Sep;50(1):69–83. doi: 10.1016/0306-4522(92)90382-c. [DOI] [PubMed] [Google Scholar]
  26. Kioussi C., Mamalaki A., Jessen K., Mirsky R., Hersh L. B., Matsas R. Expression of endopeptidase-24.11 (common acute lymphoblastic leukaemia antigen CD10) in the sciatic nerve of the adult rat after lesion and during regeneration. Eur J Neurosci. 1995 May 1;7(5):951–961. doi: 10.1111/j.1460-9568.1995.tb01083.x. [DOI] [PubMed] [Google Scholar]
  27. Kioussi C., Matsas R. Endopeptidase-24.11, a cell-surface peptidase of central nervous system neurons, is expressed by Schwann cells in the pig peripheral nervous system. J Neurochem. 1991 Aug;57(2):431–440. doi: 10.1111/j.1471-4159.1991.tb03770.x. [DOI] [PubMed] [Google Scholar]
  28. Kowalczykowski S. C. Biochemistry of genetic recombination: energetics and mechanism of DNA strand exchange. Annu Rev Biophys Biophys Chem. 1991;20:539–575. doi: 10.1146/annurev.bb.20.060191.002543. [DOI] [PubMed] [Google Scholar]
  29. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  30. Le Moual H., Devault A., Roques B. P., Crine P., Boileau G. Identification of glutamic acid 646 as a zinc-coordinating residue in endopeptidase-24.11. J Biol Chem. 1991 Aug 25;266(24):15670–15674. [PubMed] [Google Scholar]
  31. Letarte M., Vera S., Tran R., Addis J. B., Onizuka R. J., Quackenbush E. J., Jongeneel C. V., McInnes R. R. Common acute lymphocytic leukemia antigen is identical to neutral endopeptidase. J Exp Med. 1988 Oct 1;168(4):1247–1253. doi: 10.1084/jem.168.4.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lipscomb W. N., Hartsuck J. A., Reeke G. N., Jr, Quiocho F. A., Bethge P. H., Ludwig M. L., Steitz T. A., Muirhead H., Coppola J. C. The structure of carboxypeptidase A. VII. The 2.0-angstrom resolution studies of the enzyme and of its complex with glycyltyrosine, and mechanistic deductions. Brookhaven Symp Biol. 1968 Jun;21(1):24–90. [PubMed] [Google Scholar]
  33. Malfroy B., Swerts J. P., Guyon A., Roques B. P., Schwartz J. C. High-affinity enkephalin-degrading peptidase in brain is increased after morphine. Nature. 1978 Nov 30;276(5687):523–526. doi: 10.1038/276523a0. [DOI] [PubMed] [Google Scholar]
  34. Mari B., Checler F., Ponzio G., Peyron J. F., Manie S., Farahifar D., Rossi B., Auberger P. Jurkat T cells express a functional neutral endopeptidase activity (CALLA) involved in T cell activation. EMBO J. 1992 Nov;11(11):3875–3885. doi: 10.1002/j.1460-2075.1992.tb05480.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Marion D., Zasloff M., Bax A. A two-dimensional NMR study of the antimicrobial peptide magainin 2. FEBS Lett. 1988 Jan 18;227(1):21–26. doi: 10.1016/0014-5793(88)81405-4. [DOI] [PubMed] [Google Scholar]
  36. Matsas R., Fulcher I. S., Kenny A. J., Turner A. J. Substance P and [Leu]enkephalin are hydrolyzed by an enzyme in pig caudate synaptic membranes that is identical with the endopeptidase of kidney microvilli. Proc Natl Acad Sci U S A. 1983 May;80(10):3111–3115. doi: 10.1073/pnas.80.10.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. McGregor M. J., Islam S. A., Sternberg M. J. Analysis of the relationship between side-chain conformation and secondary structure in globular proteins. J Mol Biol. 1987 Nov 20;198(2):295–310. doi: 10.1016/0022-2836(87)90314-7. [DOI] [PubMed] [Google Scholar]
  38. Medina-Acosta E., Karess R. E., Schwartz H., Russell D. G. The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and localized in the amastigote stage. Mol Biochem Parasitol. 1989 Dec;37(2):263–273. doi: 10.1016/0166-6851(89)90158-8. [DOI] [PubMed] [Google Scholar]
  39. Roques B. P., Noble F., Daugé V., Fournié-Zaluski M. C., Beaumont A. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev. 1993 Mar;45(1):87–146. [PubMed] [Google Scholar]
  40. Russell D. G., Wilhelm H. The involvement of the major surface glycoprotein (gp63) of Leishmania promastigotes in attachment to macrophages. J Immunol. 1986 Apr 1;136(7):2613–2620. [PubMed] [Google Scholar]
  41. Schneider P., Rosat J. P., Bouvier J., Louis J., Bordier C. Leishmania major: differential regulation of the surface metalloprotease in amastigote and promastigote stages. Exp Parasitol. 1992 Sep;75(2):196–206. doi: 10.1016/0014-4894(92)90179-e. [DOI] [PubMed] [Google Scholar]
  42. Shipp M. A., Stefano G. B., D'Adamio L., Switzer S. N., Howard F. D., Sinisterra J., Scharrer B., Reinherz E. L. Downregulation of enkephalin-mediated inflammatory responses by CD10/neutral endopeptidase 24.11. Nature. 1990 Sep 27;347(6291):394–396. doi: 10.1038/347394a0. [DOI] [PubMed] [Google Scholar]
  43. Shipp M. A., Vijayaraghavan J., Schmidt E. V., Masteller E. L., D'Adamio L., Hersh L. B., Reinherz E. L. Common acute lymphoblastic leukemia antigen (CALLA) is active neutral endopeptidase 24.11 ("enkephalinase"): direct evidence by cDNA transfection analysis. Proc Natl Acad Sci U S A. 1989 Jan;86(1):297–301. doi: 10.1073/pnas.86.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Soleilhac J. M., Lucas E., Beaumont A., Turcaud S., Michel J. B., Ficheux D., Fournié-Zaluski M. C., Roques B. P. A 94-kDa protein, identified as neutral endopeptidase-24.11, can inactivate atrial natriuretic peptide in the vascular endothelium. Mol Pharmacol. 1992 Apr;41(4):609–614. [PubMed] [Google Scholar]
  45. Soteriadou K. P., Remoundos M. S., Katsikas M. C., Tzinia A. K., Tsikaris V., Sakarellos C., Tzartos S. J. The Ser-Arg-Tyr-Asp region of the major surface glycoprotein of Leishmania mimics the Arg-Gly-Asp-Ser cell attachment region of fibronectin. J Biol Chem. 1992 Jul 15;267(20):13980–13985. [PubMed] [Google Scholar]
  46. Soteriadou K. P., Tzinia A. K., Hadziantoniou M. G., Tzartos S. J. Identification of monomeric and oligomeric forms of a major Leishmania infantum antigen by using monoclonal antibodies. Infect Immun. 1988 May;56(5):1180–1186. doi: 10.1128/iai.56.5.1180-1186.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Soteriadou K. P., Tzinia A. K., Mamalaki A., Phelouzat M. A., Lawrence F., Robert-Gero M. Expression of the major surface glycoprotein of Leishmania, gp63, in wild-type and sinefungin-resistant promastigotes. Eur J Biochem. 1994 Jul 1;223(1):61–68. doi: 10.1111/j.1432-1033.1994.tb18966.x. [DOI] [PubMed] [Google Scholar]
  48. Stephenson S. L., Kenny A. J. The hydrolysis of alpha-human atrial natriuretic peptide by pig kidney microvillar membranes is initiated by endopeptidase-24.11. Biochem J. 1987 Apr 1;243(1):183–187. doi: 10.1042/bj2430183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tsikaris V., Detsikas E., Sakarellos-Daitsiotis M., Sakarellos C., Vatzaki E., Tzartos S. J., Marraud M., Cung M. T. Conformational requirements for molecular recognition of acetylcholine receptor main immunogenic region (MIR) analogues by monoclonal anti-MIR antibody: a two-dimensional nuclear magnetic resonance and molecular dynamics approach. Biopolymers. 1993 Jul;33(7):1123–1134. doi: 10.1002/bip.360330714. [DOI] [PubMed] [Google Scholar]
  50. Tzinia A. K., Soteriadou K. P. Substrate-dependent pH optima of gp63 purified from seven strains of Leishmania. Mol Biochem Parasitol. 1991 Jul;47(1):83–89. doi: 10.1016/0166-6851(91)90150-5. [DOI] [PubMed] [Google Scholar]
  51. Vallee B. L., Auld D. S. Short and long spacer sequences and other structural features of zinc binding sites in zinc enzymes. FEBS Lett. 1989 Oct 23;257(1):138–140. doi: 10.1016/0014-5793(89)81805-8. [DOI] [PubMed] [Google Scholar]
  52. Voyiatzaki C. S., Soteriadou K. P. Evidence of transferrin binding sites on the surface of Leishmania promastigotes. J Biol Chem. 1990 Dec 25;265(36):22380–22385. [PubMed] [Google Scholar]
  53. Voyiatzaki C. S., Soteriadou K. P. Identification and isolation of the Leishmania transferrin receptor. J Biol Chem. 1992 May 5;267(13):9112–9117. [PubMed] [Google Scholar]
  54. Yang D. M., Fairweather N., Button L. L., McMaster W. R., Kahl L. P., Liew F. Y. Oral Salmonella typhimurium (AroA-) vaccine expressing a major leishmanial surface protein (gp63) preferentially induces T helper 1 cells and protective immunity against leishmaniasis. J Immunol. 1990 Oct 1;145(7):2281–2285. [PubMed] [Google Scholar]
  55. Yang D., Rogers M. V., Brett S. J., Liew F. Y. Immunological analysis of the zinc-binding peptides of surface metalloproteinase (gp63) of Leishmania major. Immunology. 1993 Apr;78(4):582–585. [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES