Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jan 15;313(Pt 2):473–478. doi: 10.1042/bj3130473

Human ficolin: cDNA cloning, demonstration of peripheral blood leucocytes as the major site of synthesis and assignment of the gene to chromosome 9.

J Lu 1, P N Tay 1, O L Kon 1, K B Reid 1
PMCID: PMC1216931  PMID: 8573080

Abstract

Pig ficolins and a number of other proteins contain sequences that are homologous to the C-terminal halves of fibrinogen beta- and gamma-chains. To clone the cDNA for human ficolin, two degenerate oligonucleotide primers were synthesized, based on two stretches of protein sequence that were highly conserved among those proteins, and used for PCR with cDNA from a human uterus lambda gt11 library as a template. A PCR product with a predicted size of 300 bp was obtained and this was used to screen a uterus cDNA library. Of the positive clones isolated, two (U1 and U2), containing inserts of 1.7 and 1.1 kb respectively, were found to encode human ficolin. The cDNA-derived amino acid sequence of human ficolin has approx. 75% identity with, and a similar domain organization to, the two pig ficolin sequences, which are characterized by the presence of a leader peptide, a short N-terminal segment followed by a collagen-like region and then by a C-terminal fibrinogen-like domain. The 1.1 kb insert of clone U2 was used in Northern-blot analysis, and a very strong signal for a 1.4 kb mRNA species was detected in mRNA from human peripheral blood leucocytes. This showed that, despite the initial characterization of pig ficolin as a putative receptor on uterine cells for transforming growth factor beta 1, blood leucocytes are probably the major site of human ficolin synthesis. Much weaker signals of the same size were also detected in spleen, lung and thymus and may be due to the presence of tissue macrophages or trapped blood in these tissues. An mRNA species of approx. 1.3 kb in human liver also weakly hybridized to the U2 probe, indicating the presence of a sequence that was distinct from, but related to, ficolin. The gene for human ficolin has been mapped to chromosome 9.

Full Text

The Full Text of this article is available as a PDF (730.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker N. E., Mlodzik M., Rubin G. M. Spacing differentiation in the developing Drosophila eye: a fibrinogen-related lateral inhibitor encoded by scabrous. Science. 1990 Dec 7;250(4986):1370–1377. doi: 10.1126/science.2175046. [DOI] [PubMed] [Google Scholar]
  2. Bezouska K., Crichlow G. V., Rose J. M., Taylor M. E., Drickamer K. Evolutionary conservation of intron position in a subfamily of genes encoding carbohydrate-recognition domains. J Biol Chem. 1991 Jun 25;266(18):11604–11609. [PubMed] [Google Scholar]
  3. Bristow J., Tee M. K., Gitelman S. E., Mellon S. H., Miller W. L. Tenascin-X: a novel extracellular matrix protein encoded by the human XB gene overlapping P450c21B. J Cell Biol. 1993 Jul;122(1):265–278. doi: 10.1083/jcb.122.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brodsky-Doyle B., Leonard K. R., Reid K. B. Circular-dichroism and electron-microscopy studies of human subcomponent C1q before and after limited proteolysis by pepsin. Biochem J. 1976 Nov;159(2):279–286. doi: 10.1042/bj1590279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chung D. W., Harris J. E., Davie E. W. Nucleotide sequences of the three genes coding for human fibrinogen. Adv Exp Med Biol. 1990;281:39–48. doi: 10.1007/978-1-4615-3806-6_3. [DOI] [PubMed] [Google Scholar]
  6. Duncan A. R., Winter G. The binding site for C1q on IgG. Nature. 1988 Apr 21;332(6166):738–740. doi: 10.1038/332738a0. [DOI] [PubMed] [Google Scholar]
  7. Ghebrehiwet B., Peerschke E. I. The C1q-R participates in immunoregulation and signal transduction. Behring Inst Mitt. 1993 Dec;(93):236–240. [PubMed] [Google Scholar]
  8. Holmskov U., Malhotra R., Sim R. B., Jensenius J. C. Collectins: collagenous C-type lectins of the innate immune defense system. Immunol Today. 1994 Feb;15(2):67–74. doi: 10.1016/0167-5699(94)90136-8. [DOI] [PubMed] [Google Scholar]
  9. Ichijo H., Hellman U., Wernstedt C., Gonez L. J., Claesson-Welsh L., Heldin C. H., Miyazono K. Molecular cloning and characterization of ficolin, a multimeric protein with fibrinogen- and collagen-like domains. J Biol Chem. 1993 Jul 5;268(19):14505–14513. [PubMed] [Google Scholar]
  10. Ichijo H., Rönnstrand L., Miyagawa K., Ohashi H., Heldin C. H., Miyazono K. Purification of transforming growth factor-beta 1 binding proteins from porcine uterus membranes. J Biol Chem. 1991 Nov 25;266(33):22459–22464. [PubMed] [Google Scholar]
  11. Knobel H. R., Villiger W., Isliker H. Chemical analysis and electron microscopy studies of human C1q prepared by different methods. Eur J Immunol. 1975 Jan;5(1):78–82. doi: 10.1002/eji.1830050119. [DOI] [PubMed] [Google Scholar]
  12. Koyama T., Hall L. R., Haser W. G., Tonegawa S., Saito H. Structure of a cytotoxic T-lymphocyte-specific gene shows a strong homology to fibrinogen beta and gamma chains. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1609–1613. doi: 10.1073/pnas.84.6.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kölble K., Lu J., Mole S. E., Kaluz S., Reid K. B. Assignment of the human pulmonary surfactant protein D gene (SFTP4) to 10q22-q23 close to the surfactant protein A gene cluster. Genomics. 1993 Aug;17(2):294–298. doi: 10.1006/geno.1993.1324. [DOI] [PubMed] [Google Scholar]
  14. Lu J., Wiedemann H., Timpl R., Reid K. B. Similarity in structure between C1q and the collectins as judged by electron microscopy. Behring Inst Mitt. 1993 Dec;(93):6–16. [PubMed] [Google Scholar]
  15. Lu J., Willis A. C., Reid K. B. Purification, characterization and cDNA cloning of human lung surfactant protein D. Biochem J. 1992 Jun 15;284(Pt 3):795–802. doi: 10.1042/bj2840795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Malhotra R. Collectin receptor (C1q receptor): structure and function. Behring Inst Mitt. 1993 Dec;(93):254–261. [PubMed] [Google Scholar]
  17. Malhotra R., Thiel S., Reid K. B., Sim R. B. Human leukocyte C1q receptor binds other soluble proteins with collagen domains. J Exp Med. 1990 Sep 1;172(3):955–959. doi: 10.1084/jem.172.3.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miyamura K., Leigh L. E., Lu J., Hopkin J., López Bernal A., Reid K. B. Surfactant protein D binding to alveolar macrophages. Biochem J. 1994 May 15;300(Pt 1):237–242. doi: 10.1042/bj3000237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reid K. B. Proteins involved in the activation and control of the two pathways of human complement. Biochem Soc Trans. 1983 Jan;11(1):1–12. doi: 10.1042/bst0110001. [DOI] [PubMed] [Google Scholar]
  20. Rixon M. W., Chung D. W., Davie E. W. Nucleotide sequence of the gene for the gamma chain of human fibrinogen. Biochemistry. 1985 Apr 9;24(8):2077–2086. doi: 10.1021/bi00329a041. [DOI] [PubMed] [Google Scholar]
  21. Sellar G. C., Blake D. J., Reid K. B. Characterization and organization of the genes encoding the A-, B- and C-chains of human complement subcomponent C1q. The complete derived amino acid sequence of human C1q. Biochem J. 1991 Mar 1;274(Pt 2):481–490. doi: 10.1042/bj2740481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Siri A., Carnemolla B., Saginati M., Leprini A., Casari G., Baralle F., Zardi L. Human tenascin: primary structure, pre-mRNA splicing patterns and localization of the epitopes recognized by two monoclonal antibodies. Nucleic Acids Res. 1991 Feb 11;19(3):525–531. doi: 10.1093/nar/19.3.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tenner A. J. Functional aspects of the C1q receptors. Behring Inst Mitt. 1993 Dec;(93):241–253. [PubMed] [Google Scholar]
  24. Voss T., Melchers K., Scheirle G., Schäfer K. P. Structural comparison of recombinant pulmonary surfactant protein SP-A derived from two human coding sequences: implications for the chain composition of natural human SP-A. Am J Respir Cell Mol Biol. 1991 Jan;4(1):88–94. doi: 10.1165/ajrcmb/4.1.88. [DOI] [PubMed] [Google Scholar]
  25. Xu X., Doolittle R. F. Presence of a vertebrate fibrinogen-like sequence in an echinoderm. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2097–2101. doi: 10.1073/pnas.87.6.2097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yamamoto T., Gotoh M., Sasaki H., Terada M., Kitajima M., Hirohashi S. Molecular cloning and initial characterization of a novel fibrinogen-related gene, HFREP-1. Biochem Biophys Res Commun. 1993 Jun 15;193(2):681–687. doi: 10.1006/bbrc.1993.1678. [DOI] [PubMed] [Google Scholar]
  27. von Heijne G. Transcending the impenetrable: how proteins come to terms with membranes. Biochim Biophys Acta. 1988 Jun 9;947(2):307–333. doi: 10.1016/0304-4157(88)90013-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES