Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jan 15;313(Pt 2):543–547. doi: 10.1042/bj3130543

Analysis of amplicons containing the esterase genes responsible for insecticide resistance in the peach-potato aphid Myzus persicae (Sulzer).

L M Field 1, A L Devonshire 1, C Tyler-Smith 1
PMCID: PMC1216941  PMID: 8573090

Abstract

The amplification of genes encoding an insecticide-detoxifying esterase (E4) in the peach-potato aphid Myzus persicae is one of the few examples where this genetic phenomenon has been shown to be involved in the response of an intact higher organism to artificial selection. Here we report quantitative and qualitative studies of the repeat units (amplicons) containing the E4 genes in a highly resistant aphid clone. Initial studies to quantify esterase sequences showed a 5-11-fold increase in resistant aphids compared with susceptible aphids, suggesting the presence of 10-22 gene copies per diploid genome. A more incisive analysis by pulsed-field gel electrophoresis confirmed the presence of about 12 copies of the E4 gene and showed them to be on about 24 kb amplicons, arranged as a tandem array of direct repeats. This, together with previous results from crossing experiments and with recent in situ hybridization studies, confirms that the E4 gene amplification in this aphid clone is heterozygous at a single locus. However, these data show that the gene amplification alone cannot account for the approx. 60 times higher levels of E4 protein and its mRNA present in this aphid clone, and therefore resistance must involve changes in both esterase gene copy number and gene expression.

Full Text

The Full Text of this article is available as a PDF (317.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borst P., Van der Bliek A. M., Van der Velde-Koerts T., Hes E. Structure of amplified DNA, analyzed by pulsed field gradient gel electrophoresis. J Cell Biochem. 1987 Aug;34(4):247–258. doi: 10.1002/jcb.240340404. [DOI] [PubMed] [Google Scholar]
  2. Bostock C. J. Mechanisms of DNA sequence amplification and their evolutionary consequences. Philos Trans R Soc Lond B Biol Sci. 1986 Jan 29;312(1154):261–273. doi: 10.1098/rstb.1986.0006. [DOI] [PubMed] [Google Scholar]
  3. Brown R. Gene amplification and drug resistance. J Pathol. 1991 Apr;163(4):287–292. doi: 10.1002/path.1711630404. [DOI] [PubMed] [Google Scholar]
  4. Devonshire A. L., Field L. M. Gene amplification and insecticide resistance. Annu Rev Entomol. 1991;36:1–23. doi: 10.1146/annurev.en.36.010191.000245. [DOI] [PubMed] [Google Scholar]
  5. Field L. M., Devonshire A. L., Forde B. G. Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem J. 1988 Apr 1;251(1):309–312. doi: 10.1042/bj2510309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Field L. M., Javed N., Stribley M. F., Devonshire A. L. The peach-potato aphid Myzus persicae and the tobacco aphid Myzus nicotianae have the same esterase-based mechanisms of insecticide resistance. Insect Mol Biol. 1994 Aug;3(3):143–148. doi: 10.1111/j.1365-2583.1994.tb00161.x. [DOI] [PubMed] [Google Scholar]
  7. Field L. M., Williamson M. S., Moores G. D., Devonshire A. L. Cloning and analysis of the esterase genes conferring insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer). Biochem J. 1993 Sep 1;294(Pt 2):569–574. doi: 10.1042/bj2940569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kanda N., Schreck R., Alt F., Bruns G., Baltimore D., Latt S. Isolation of amplified DNA sequences from IMR-32 human neuroblastoma cells: facilitation by fluorescence-activated flow sorting of metaphase chromosomes. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4069–4073. doi: 10.1073/pnas.80.13.4069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kinzler K. W., Zehnbauer B. A., Brodeur G. M., Seeger R. C., Trent J. M., Meltzer P. S., Vogelstein B. Amplification units containing human N-myc and c-myc genes. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1031–1035. doi: 10.1073/pnas.83.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Milbrandt J. D., Heintz N. H., White W. C., Rothman S. M., Hamlin J. L. Methotrexate-resistant Chinese hamster ovary cells have amplified a 135-kilobase-pair region that includes the dihydrofolate reductase gene. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6043–6047. doi: 10.1073/pnas.78.10.6043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Roninson I. B. Detection and mapping of homologous, repeated and amplified DNA sequences by DNA renaturation in agarose gels. Nucleic Acids Res. 1983 Aug 25;11(16):5413–5431. doi: 10.1093/nar/11.16.5413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Saito I., Groves R., Giulotto E., Rolfe M., Stark G. R. Evolution and stability of chromosomal DNA coamplified with the CAD gene. Mol Cell Biol. 1989 Jun;9(6):2445–2452. doi: 10.1128/mcb.9.6.2445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schimke R. T. Gene amplification; what are we learning? Mutat Res. 1992 May;276(3):145–149. doi: 10.1016/0165-1110(92)90004-s. [DOI] [PubMed] [Google Scholar]
  14. Shotkoski F. A., Fallon A. M. An amplified mosquito dihydrofolate reductase gene: amplicon size and chromosomal distribution. Insect Mol Biol. 1993;2(3):155–161. doi: 10.1111/j.1365-2583.1993.tb00135.x. [DOI] [PubMed] [Google Scholar]
  15. Smith K. A., Gorman P. A., Stark M. B., Groves R. P., Stark G. R. Distinctive chromosomal structures are formed very early in the amplification of CAD genes in Syrian hamster cells. Cell. 1990 Dec 21;63(6):1219–1227. doi: 10.1016/0092-8674(90)90417-d. [DOI] [PubMed] [Google Scholar]
  16. Southern E. M., Anand R., Brown W. R., Fletcher D. S. A model for the separation of large DNA molecules by crossed field gel electrophoresis. Nucleic Acids Res. 1987 Aug 11;15(15):5925–5943. doi: 10.1093/nar/15.15.5925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Windle B., Draper B. W., Yin Y. X., O'Gorman S., Wahl G. M. A central role for chromosome breakage in gene amplification, deletion formation, and amplicon integration. Genes Dev. 1991 Feb;5(2):160–174. doi: 10.1101/gad.5.2.160. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES