Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jan 15;313(Pt 2):549–554. doi: 10.1042/bj3130549

Spermine suppresses the activation of human neutrophil NADPH oxidase in cell-free and semi-recombinant systems.

K Ogata 1, N Nishimoto 1, D J Uhlinger 1, K Igarashi 1, M Takeshita 1, M Tamura 1
PMCID: PMC1216942  PMID: 8573091

Abstract

Spermine, a cellular polyamine, down-regulates O2- generation in human neutrophils stimulated by receptor-linked agonist [Ogata, Tamura and Takeshita (1992) Biochem. Biophys. Res. Commun. 182, 20-26]. In this study, to elucidate the mechanism for the inhibition, the effect of spermine on cell-free activation of the O2- generating enzyme (NADPH oxidase) was examined. Spermine suppressed the SDS-induced activation of NADPH oxidase in a dose-dependent manner with an IC50 of 18 microM. The inhibition was specific for spermine over its precursor amines, spermidine and putrescine. Spermine did not alter the Km for NADPH or the optimal concentration of SDS for activation. The amine was inhibitory only when added before activation, indicating that it affects the activation process rather than the enzyme's activity. An increased concentration of cytosol partly prevented the inhibition by spermine. In semi-recombinant cell-free system, spermine inhibited the activation of NADPH oxidase as effectively as in the cell-free system (IC50 = 13 microM). Pretreatment of each recombinant cytosolic component with spermine revealed that they (especially p67phox) are sensitive to spermine. These results suggest that spermine interacts with cytosolic component(s) and impairs the assembly of NADPH oxidase.

Full Text

The Full Text of this article is available as a PDF (438.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babior B. M. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978 Mar 23;298(12):659–668. doi: 10.1056/NEJM197803232981205. [DOI] [PubMed] [Google Scholar]
  2. Badwey J. A., Karnovsky M. L. Active oxygen species and the functions of phagocytic leukocytes. Annu Rev Biochem. 1980;49:695–726. doi: 10.1146/annurev.bi.49.070180.003403. [DOI] [PubMed] [Google Scholar]
  3. Bueb J. L., Da Silva A., Mousli M., Landry Y. Natural polyamines stimulate G-proteins. Biochem J. 1992 Mar 1;282(Pt 2):545–550. doi: 10.1042/bj2820545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fakler B., Brändle U., Glowatzki E., Weidemann S., Zenner H. P., Ruppersberg J. P. Strong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine. Cell. 1995 Jan 13;80(1):149–154. doi: 10.1016/0092-8674(95)90459-x. [DOI] [PubMed] [Google Scholar]
  5. Feige J. J., Madani C., Chambaz E. M. Hormonal control of polyamine levels in bovine adrenocortical cells. Endocrinology. 1986 Mar;118(3):1059–1066. doi: 10.1210/endo-118-3-1059. [DOI] [PubMed] [Google Scholar]
  6. Igarashi K., Kashiwagi K., Hamasaki H., Miura A., Kakegawa T., Hirose S., Matsuzaki S. Formation of a compensatory polyamine by Escherichia coli polyamine-requiring mutants during growth in the absence of polyamines. J Bacteriol. 1986 Apr;166(1):128–134. doi: 10.1128/jb.166.1.128-134.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jamal Z., Martin A., Gomez-Muñoz A., Brindley D. N. Plasma membrane fractions from rat liver contain a phosphatidate phosphohydrolase distinct from that in the endoplasmic reticulum and cytosol. J Biol Chem. 1991 Feb 15;266(5):2988–2996. [PubMed] [Google Scholar]
  8. Joseph G., Gorzalczany Y., Koshkin V., Pick E. Inhibition of NADPH oxidase activation by synthetic peptides mapping within the carboxyl-terminal domain of small GTP-binding proteins. Lack of amino acid sequence specificity and importance of polybasic motif. J Biol Chem. 1994 Nov 18;269(46):29024–29031. [PubMed] [Google Scholar]
  9. Kreck M. L., Uhlinger D. J., Tyagi S. R., Inge K. L., Lambeth J. D. Participation of the small molecular weight GTP-binding protein Rac1 in cell-free activation and assembly of the respiratory burst oxidase. Inhibition by a carboxyl-terminal Rac peptide. J Biol Chem. 1994 Feb 11;269(6):4161–4168. [PubMed] [Google Scholar]
  10. Leto T. L., Adams A. G., de Mendez I. Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10650–10654. doi: 10.1073/pnas.91.22.10650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leto T. L., Lomax K. J., Volpp B. D., Nunoi H., Sechler J. M., Nauseef W. M., Clark R. A., Gallin J. I., Malech H. L. Cloning of a 67-kD neutrophil oxidase factor with similarity to a noncatalytic region of p60c-src. Science. 1990 May 11;248(4956):727–730. doi: 10.1126/science.1692159. [DOI] [PubMed] [Google Scholar]
  12. Lomax K. J., Leto T. L., Nunoi H., Gallin J. I., Malech H. L. Minor errors in two published sequences. Science. 1989 Nov 24;246(4933):987–987. doi: 10.1126/science.2587992. [DOI] [PubMed] [Google Scholar]
  13. Miyahara M., Okimasu E., Uchida H., Eisuke, Sato F., Yamamoto M., Utsumi K. Charge-dependent regulation of NADPH oxidase activities in intact and subcellular systems of polymorphonuclear leukocytes. Biochim Biophys Acta. 1988 Aug 19;971(1):46–54. doi: 10.1016/0167-4889(88)90160-7. [DOI] [PubMed] [Google Scholar]
  14. Miyahara M., Watanabe S., Okimasu E., Utsumi K. Charge-dependent regulation of NADPH oxidase activity in guinea-pig polymorphonuclear leukocytes. Biochim Biophys Acta. 1987 Jul 29;929(3):253–262. doi: 10.1016/0167-4889(87)90251-5. [DOI] [PubMed] [Google Scholar]
  15. Ogata K., Tamura M., Takeshita M. Spermine down-regulates superoxide generation induced by fMet-Leu-Phe in electropermeabilized human neutrophils. Biochem Biophys Res Commun. 1992 Jan 15;182(1):20–26. doi: 10.1016/s0006-291x(05)80106-8. [DOI] [PubMed] [Google Scholar]
  16. Ohtsuka T., Hiura M., Ozawa M., Okamura N., Nakamura M., Ishibashi S. Involvement of membrane charges in constituting the active form of NADPH oxidase in guinea pig polymorphonuclear leukocytes. Arch Biochem Biophys. 1990 Jul;280(1):74–79. doi: 10.1016/0003-9861(90)90520-9. [DOI] [PubMed] [Google Scholar]
  17. Pegg A. E., McCann P. P. Polyamine metabolism and function. Am J Physiol. 1982 Nov;243(5):C212–C221. doi: 10.1152/ajpcell.1982.243.5.C212. [DOI] [PubMed] [Google Scholar]
  18. Rossi F. The O2- -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim Biophys Acta. 1986 Nov 4;853(1):65–89. doi: 10.1016/0304-4173(86)90005-4. [DOI] [PubMed] [Google Scholar]
  19. Rotrosen D., Kleinberg M. E., Nunoi H., Leto T., Gallin J. I., Malech H. L. Evidence for a functional cytoplasmic domain of phagocyte oxidase cytochrome b558. J Biol Chem. 1990 May 25;265(15):8745–8750. [PubMed] [Google Scholar]
  20. Sakai K., Sada K., Tanaka Y., Kobayashi T., Nakamura S., Yamamura H. Regulation of cytosolic protein-tyrosine kinase from porcine spleen by polyamines and negative-charged polysaccharides. Biochem Biophys Res Commun. 1988 Aug 15;154(3):883–889. doi: 10.1016/0006-291x(88)90222-7. [DOI] [PubMed] [Google Scholar]
  21. Segal A. W., Abo A. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci. 1993 Feb;18(2):43–47. doi: 10.1016/0968-0004(93)90051-n. [DOI] [PubMed] [Google Scholar]
  22. Segal A. W. The electron transport chain of the microbicidal oxidase of phagocytic cells and its involvement in the molecular pathology of chronic granulomatous disease. J Clin Invest. 1989 Jun;83(6):1785–1793. doi: 10.1172/JCI114083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Singh A., Kumar P., Laloraya M., Verma S., Nivsarkar M. Superoxide dismutase activity regulation by spermine: a new dimension in spermine biochemistry and sperm development. Biochem Biophys Res Commun. 1991 May 31;177(1):420–426. doi: 10.1016/0006-291x(91)92000-a. [DOI] [PubMed] [Google Scholar]
  24. Sumimoto H., Kage Y., Nunoi H., Sasaki H., Nose T., Fukumaki Y., Ohno M., Minakami S., Takeshige K. Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5345–5349. doi: 10.1073/pnas.91.12.5345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tabor C. W., Tabor H. 1,4-Diaminobutane (putrescine), spermidine, and spermine. Annu Rev Biochem. 1976;45:285–306. doi: 10.1146/annurev.bi.45.070176.001441. [DOI] [PubMed] [Google Scholar]
  26. Tal T., Aviram I. Defensin interferes with the activation of neutrophil NADPH oxidase in a cell-free system. Biochem Biophys Res Commun. 1993 Oct 29;196(2):636–641. doi: 10.1006/bbrc.1993.2297. [DOI] [PubMed] [Google Scholar]
  27. Tamura M., Ogata K., Takeshita M. Phosphatidic acid-induced superoxide generation in electropermeabilized human neutrophils. Arch Biochem Biophys. 1993 Sep;305(2):477–482. doi: 10.1006/abbi.1993.1450. [DOI] [PubMed] [Google Scholar]
  28. Tamura M., Takeshita M., Curnutte J. T., Uhlinger D. J., Lambeth J. D. Stabilization of human neutrophil NADPH oxidase activated in a cell-free system by cytosolic proteins and by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. J Biol Chem. 1992 Apr 15;267(11):7529–7538. [PubMed] [Google Scholar]
  29. Tamura M., Tamura T., Tyagi S. R., Lambeth J. D. The superoxide-generating respiratory burst oxidase of human neutrophil plasma membrane. Phosphatidylserine as an effector of the activated enzyme. J Biol Chem. 1988 Nov 25;263(33):17621–17626. [PubMed] [Google Scholar]
  30. Taniguchi K., Masuda Y., Takanaka K. Action sites of antiallergic drugs on human neutrophils. Jpn J Pharmacol. 1990 Jan;52(1):101–108. doi: 10.1254/jjp.52.101. [DOI] [PubMed] [Google Scholar]
  31. Thrasher A. J., Keep N. H., Wientjes F., Segal A. W. Chronic granulomatous disease. Biochim Biophys Acta. 1994 Oct 21;1227(1-2):1–24. doi: 10.1016/0925-4439(94)90100-7. [DOI] [PubMed] [Google Scholar]
  32. Uhlinger D. J., Taylor K. L., Lambeth J. D. p67-phox enhances the binding of p47-phox to the human neutrophil respiratory burst oxidase complex. J Biol Chem. 1994 Sep 2;269(35):22095–22098. [PubMed] [Google Scholar]
  33. Uhlinger D. J., Tyagi S. R., Inge K. L., Lambeth J. D. The respiratory burst oxidase of human neutrophils. Guanine nucleotides and arachidonate regulate the assembly of a multicomponent complex in a semirecombinant cell-free system. J Biol Chem. 1993 Apr 25;268(12):8624–8631. [PubMed] [Google Scholar]
  34. Wilson E., Olcott M. C., Bell R. M., Merrill A. H., Jr, Lambeth J. D. Inhibition of the oxidative burst in human neutrophils by sphingoid long-chain bases. Role of protein kinase C in activation of the burst. J Biol Chem. 1986 Sep 25;261(27):12616–12623. [PubMed] [Google Scholar]
  35. Wojcikiewicz R. J., Fain J. N. Polyamines inhibit phospholipase C-catalysed polyphosphoinositide hydrolysis. Studies with permeabilized GH3 cells. Biochem J. 1988 Nov 1;255(3):1015–1021. doi: 10.1042/bj2551015. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES