Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jan 15;313(Pt 2):597–602. doi: 10.1042/bj3130597

Occurrence of a cytosolic neutral chitobiase activity involved in oligomannoside degradation: a study with Madin-Darby bovine kidney (MDBK) cells.

R Cacan 1, C Dengremont 1, O Labiau 1, D Kmiécik 1, A M Mir 1, A Verbert 1
PMCID: PMC1216949  PMID: 8573098

Abstract

Neutral oligomannosides possessing one GlcNAc (OS-Gn1) and two GlcNAc (Os-Gn2) at the reducing end have been reported to be released during the N-glycosylation process in various biological models. To investigate which enzyme is responsible for OS-Gn1 formation, we used the Madin-Darby bovine kidney (MDBK) cell line which exhibits neither lysosomal chitobiase nor endoglucosaminidase activities. However, these cells produced OS-Gn1 and we showed that a neutral chitobiase is responsible for the transformation of OS-Gn2 into OS-Gn1. Using streptolysin O-permeabilized MDBK cells, we demonstrated that this neutral chitobiase activity is located in the cytosolic compartment and is active on oligomannoside species released during the N-glycosylation process.

Full Text

The Full Text of this article is available as a PDF (486.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anumula K. R., Spiro R. G. Release of glucose-containing polymannose oligosaccharides during glycoprotein biosynthesis. Studies with thyroid microsomal enzymes and slices. J Biol Chem. 1983 Dec 25;258(24):15274–15282. [PubMed] [Google Scholar]
  2. Aronson N. N., Jr, Backes M., Kuranda M. J. Rat liver chitobiase: purification, properties, and role in the lysosomal degradation of Asn-linked glycoproteins. Arch Biochem Biophys. 1989 Aug 1;272(2):290–300. doi: 10.1016/0003-9861(89)90222-1. [DOI] [PubMed] [Google Scholar]
  3. Baussant T., Strecker G., Wieruszeski J. M., Montreuil J., Michalski J. C. Catabolism of glycoprotein glycans. Characterization of a lysosomal endo-N-acetyl-beta-D-glucosaminidase specific for glycans with a terminal chitobiose residue. Eur J Biochem. 1986 Sep 1;159(2):381–385. doi: 10.1111/j.1432-1033.1986.tb09879.x. [DOI] [PubMed] [Google Scholar]
  4. Cacan R., Villers C., Bélard M., Kaiden A., Krag S. S., Verbert A. Different fates of the oligosaccharide moieties of lipid intermediates. Glycobiology. 1992 Apr;2(2):127–136. doi: 10.1093/glycob/2.2.127. [DOI] [PubMed] [Google Scholar]
  5. Daniel P. F., Winchester B., Warren C. D. Mammalian alpha-mannosidases--multiple forms but a common purpose? Glycobiology. 1994 Oct;4(5):551–566. doi: 10.1093/glycob/4.5.551. [DOI] [PubMed] [Google Scholar]
  6. DeGasperi R., al Daher S., Daniel P. F., Winchester B. G., Jeanloz R. W., Warren C. D. The substrate specificity of bovine and feline lysosomal alpha-D-mannosidases in relation to alpha-mannosidosis. J Biol Chem. 1991 Sep 5;266(25):16556–16563. [PubMed] [Google Scholar]
  7. Fisher K. J., Aronson N. N., Jr Cloning and expression of the cDNA sequence encoding the lysosomal glycosidase di-N-acetylchitobiase. J Biol Chem. 1992 Sep 25;267(27):19607–19616. [PubMed] [Google Scholar]
  8. Hanover J. A., Lennarz W. J. N-Linked glycoprotein assembly. Evidence that oligosaccharide attachment occurs within the lumen of the endoplasmic reticulum. J Biol Chem. 1980 Apr 25;255(8):3600–3604. [PubMed] [Google Scholar]
  9. Kmiécik D., Herman V., Stroop C. J., Michalski J. C., Mir A. M., Labiau O., Verbert A., Cacan R. Catabolism of glycan moieties of lipid intermediates leads to a single Man5GlcNAc oligosaccharide isomer: a study with permeabilized CHO cells. Glycobiology. 1995 Jul;5(5):483–494. doi: 10.1093/glycob/5.5.483. [DOI] [PubMed] [Google Scholar]
  10. Koide N., Muramatsu T. Endo-beta-N-acetylglucosaminidase acting on carbohydrate moieties of glycoproteins. Purification and properties of the enzyme from Diplococcus pneumoniae. J Biol Chem. 1974 Aug 10;249(15):4897–4904. [PubMed] [Google Scholar]
  11. Kuranda M. J., Aronson N. N., Jr A di-N-acetylchitobiase activity is involved in the lysosomal catabolism of asparagine-linked glycoproteins in rat liver. J Biol Chem. 1986 May 5;261(13):5803–5809. [PubMed] [Google Scholar]
  12. Moore S. E., Spiro R. G. Intracellular compartmentalization and degradation of free polymannose oligosaccharides released during glycoprotein biosynthesis. J Biol Chem. 1994 Apr 29;269(17):12715–12721. [PubMed] [Google Scholar]
  13. Nishigaki M., Muramatsu T., Kobata A. Endoglycosidases acting on carbohydrate moieties of glycoproteins: demonstration in mammalian tissue. Biochem Biophys Res Commun. 1974 Jul 24;59(2):638–645. doi: 10.1016/s0006-291x(74)80027-6. [DOI] [PubMed] [Google Scholar]
  14. Oku H., Hase S. Studies on the substrate specificity of neutral alpha-mannosidase purified from Japanese quail oviduct by using sugar chains from glycoproteins. J Biochem. 1991 Dec;110(6):982–989. doi: 10.1093/oxfordjournals.jbchem.a123700. [DOI] [PubMed] [Google Scholar]
  15. Overdijk B., van der Kroef W. M., Lisman J. J., Pierce R. J., Montreuil J., Spik G. Demonstration and partial characterization of endo-N-acetyl-beta-D-glucosaminidase in human tissues. FEBS Lett. 1981 Jun 15;128(2):364–366. doi: 10.1016/0014-5793(81)80118-4. [DOI] [PubMed] [Google Scholar]
  16. Pierce R. J., Spik G., Montreuil J. Cytosolic location of an endo-N-acetyl-beta-D-glucosaminidase activity in rat liver and kidney. Biochem J. 1979 Jun 15;180(3):673–676. doi: 10.1042/bj1800673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pierce R. J., Spik G., Montreuil J. Demonstration and cytosolic location of an endo-N-acetyl-beta-D-glucosaminidase activity towards an asialo-N-acetyl-lactosaminic-type substrate in rat liver. Biochem J. 1980 Jan 1;185(1):261–264. doi: 10.1042/bj1850261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Song Z. W., Li S. C., Li Y. T. Absence of endo-beta-N-acetylglucosaminidase activity in the kidneys of sheep, cattle and pig. Biochem J. 1987 Nov 15;248(1):145–149. doi: 10.1042/bj2480145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Villers C., Cacan R., Mir A. M., Labiau O., Verbert A. Release of oligomannoside-type glycans as a marker of the degradation of newly synthesized glycoproteins. Biochem J. 1994 Feb 15;298(Pt 1):135–142. doi: 10.1042/bj2980135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. al Daher S., de Gasperi R., Daniel P., Hall N., Warren C. D., Winchester B. The substrate-specificity of human lysosomal alpha-D-mannosidase in relation to genetic alpha-mannosidosis. Biochem J. 1991 Aug 1;277(Pt 3):743–751. doi: 10.1042/bj2770743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. van Halbeek H., Dorland L., Vliegenthart J. F., Spik G., Cheron A., Mohtreuil J. Structure determination of two oligomannoside-type glycopeptides obtained from bovine lactotransferrin, by 500 MHz 1H-NMR spectroscopy. Biochim Biophys Acta. 1981 Jul;675(2):293–296. doi: 10.1016/0304-4165(81)90240-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES