Abstract
Toxoplasma gondii tachyzoites were loaded with the fluorescent indicator fura 2 to investigate the transport mechanisms involved in maintaining their intracellular Ca2+ homoeostasis. The mitochondrial ATPase inhibitor oligomycin and the endoplasmic-reticulum Ca(2+)-ATPase inhibitor thapsigargin increased the intracellular Ca2+ concentration ([Ca2+]i), thus indicating the requirement for ATP and the involvement of the endoplasmic reticulum in maintaining intracellular Ca2+ homoeostasis. The effect of thapsigargin was more accentuated in the presence of extracellular Ca2+, clearly showing that, as occurs with other eukaryotic cells, depletion of intracellular Ca2+ pools led to an increase in the uptake of Ca2+ from the extracellular medium. In addition to these results, we found evidence that, in contrast with what occurs in mammalian cells, T. gondii tachyzoites possess a significant amount of Ca2+ stored in an acidic compartment, termed the acidocalcisome, as indicated by: (1) the increase in [Ca2+]i induced by bafilomycin A1 (a specific inhibitor of H(+)-ATPases), nigericin (a K+/H+ exchanger) or the weak base NH4Cl, in the nominal absence of extracellular Ca2+ to preclude Ca2+ entry; and (2) the effect of ionomycin, a Ca(2+)-releasing ionophore that cannot take Ca2+ out of acidic organelles and that was more effective after alkalinization of these compartments by addition of bafilomycin A1, nigericin or NH4Cl. Considering the relative importance of the ionomycin-releasable and the ionomycin + NH4Cl-releasable Ca2+ pools, it is apparent that T. gondii tachyzoites contain a significant amount of Ca2+ stored in acidocalcisomes.
Full Text
The Full Text of this article is available as a PDF (490.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bode H. P., Eder B., Trautmann M. An investigation on the role of vacuolar-type proton pumps and luminal acidity in calcium sequestration by nonmitochondrial and inositol-1,4,5-trisphosphate-sensitive intracellular calcium stores in clonal insulin-secreting cells. Eur J Biochem. 1994 Jun 15;222(3):869–877. doi: 10.1111/j.1432-1033.1994.tb18934.x. [DOI] [PubMed] [Google Scholar]
- Bowman E. J., Siebers A., Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7972–7976. doi: 10.1073/pnas.85.21.7972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Busa W. B., Nuccitelli R. Metabolic regulation via intracellular pH. Am J Physiol. 1984 Apr;246(4 Pt 2):R409–R438. doi: 10.1152/ajpregu.1984.246.4.R409. [DOI] [PubMed] [Google Scholar]
- Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
- Chamberland S., Kirst H. A., Current W. L. Comparative activity of macrolides against Toxoplasma gondii demonstrating utility of an in vitro microassay. Antimicrob Agents Chemother. 1991 May;35(5):903–909. doi: 10.1128/aac.35.5.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coppens I., Baudhuin P., Opperdoes F. R., Courtoy P. J. Role of acidic compartments in Trypanosoma brucei, with special reference to low-density lipoprotein processing. Mol Biochem Parasitol. 1993 Apr;58(2):223–232. doi: 10.1016/0166-6851(93)90044-x. [DOI] [PubMed] [Google Scholar]
- Cunningham K. W., Fink G. R. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J Cell Biol. 1994 Feb;124(3):351–363. doi: 10.1083/jcb.124.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Docampo R., Scott D. A., Vercesi A. E., Moreno S. N. Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. Biochem J. 1995 Sep 15;310(Pt 3):1005–1012. doi: 10.1042/bj3101005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Endo T., Sethi K. K., Piekarski G. Toxoplasma gondii: calcium ionophore A23187-mediated exit of trophozoites from infected murine macrophages. Exp Parasitol. 1982 Apr;53(2):179–188. doi: 10.1016/0014-4894(82)90059-5. [DOI] [PubMed] [Google Scholar]
- Fasolato C., Zottini M., Clementi E., Zacchetti D., Meldolesi J., Pozzan T. Intracellular Ca2+ pools in PC12 cells. Three intracellular pools are distinguished by their turnover and mechanisms of Ca2+ accumulation, storage, and release. J Biol Chem. 1991 Oct 25;266(30):20159–20167. [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Liu C., Hermann T. E. Characterization of ionomycin as a calcium ionophore. J Biol Chem. 1978 Sep 10;253(17):5892–5894. [PubMed] [Google Scholar]
- Luft B. J., Remington J. S. AIDS commentary. Toxoplasmic encephalitis. J Infect Dis. 1988 Jan;157(1):1–6. doi: 10.1093/infdis/157.1.1. [DOI] [PubMed] [Google Scholar]
- Moreno S. N., Docampo R., Vercesi A. E. Calcium homeostasis in procyclic and bloodstream forms of Trypanosoma brucei. Lack of inositol 1,4,5-trisphosphate-sensitive Ca2+ release. J Biol Chem. 1992 Mar 25;267(9):6020–6026. [PubMed] [Google Scholar]
- Negulescu P. A., Machen T. E. Intracellular ion activities and membrane transport in parietal cells measured with fluorescent dyes. Methods Enzymol. 1990;192:38–81. doi: 10.1016/0076-6879(90)92062-i. [DOI] [PubMed] [Google Scholar]
- Nicholls D. G. Intracellular calcium homeostasis. Br Med Bull. 1986 Oct;42(4):353–358. doi: 10.1093/oxfordjournals.bmb.a072152. [DOI] [PubMed] [Google Scholar]
- Norrby R., Lindholm L., Lycke E. Lysosomes of Toxoplasma gondii and their possible relation to the host-cell penetration of toxoplasma parasites. J Bacteriol. 1968 Oct;96(4):916–919. doi: 10.1128/jb.96.4.916-919.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Putney J. W., Jr Inositol phosphates and calcium entry. Adv Second Messenger Phosphoprotein Res. 1992;26:143–160. [PubMed] [Google Scholar]
- Rooney E. K., Gross J. D. ATP-driven Ca2+/H+ antiport in acid vesicles from Dictyostelium. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8025–8029. doi: 10.1073/pnas.89.17.8025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rooney E. K., Gross J. D., Satre M. Characterisation of an intracellular Ca2+ pump in Dictyostelium. Cell Calcium. 1994 Dec;16(6):509–522. doi: 10.1016/0143-4160(94)90081-7. [DOI] [PubMed] [Google Scholar]
- Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
- Schwab J. C., Cao Y., Slowik M. R., Joiner K. A. Localization of azithromycin in Toxoplasma gondii-infected cells. Antimicrob Agents Chemother. 1994 Jul;38(7):1620–1627. doi: 10.1128/aac.38.7.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartzman J. D., Saffer L. D. How Toxoplasma gondii gets in and out of host cells. Subcell Biochem. 1992;18:333–364. doi: 10.1007/978-1-4899-1651-8_10. [DOI] [PubMed] [Google Scholar]
- Scott D. A., Moreno S. N., Docampo R. Ca2+ storage in Trypanosoma brucei: the influence of cytoplasmic pH and importance of vacuolar acidity. Biochem J. 1995 Sep 15;310(Pt 3):789–794. doi: 10.1042/bj3100789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Styrt B., Klempner M. S. Lysosomotropic amines modulate neutrophil calcium homeostasis. J Cell Physiol. 1988 May;135(2):309–316. doi: 10.1002/jcp.1041350219. [DOI] [PubMed] [Google Scholar]
- Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thévenod F., Dehlinger-Kremer M., Kemmer T. P., Christian A. L., Potter B. V., Schulz I. Characterization of inositol 1,4,5-trisphosphate-sensitive (IsCaP) and -insensitive (IisCaP) nonmitochondrial Ca2+ pools in rat pancreatic acinar cells. J Membr Biol. 1989 Jul;109(2):173–186. doi: 10.1007/BF01870856. [DOI] [PubMed] [Google Scholar]
- Vercesi A. E., Moreno S. N., Bernardes C. F., Meinicke A. R., Fernandes E. C., Docampo R. Thapsigargin causes Ca2+ release and collapse of the membrane potential of Trypanosoma brucei mitochondria in situ and of isolated rat liver mitochondria. J Biol Chem. 1993 Apr 25;268(12):8564–8568. [PubMed] [Google Scholar]
- Vercesi A. E., Moreno S. N., Docampo R. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei. Biochem J. 1994 Nov 15;304(Pt 1):227–233. doi: 10.1042/bj3040227. [DOI] [PMC free article] [PubMed] [Google Scholar]