Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Biochemical Journal logoLink to Biochemical Journal
. 1996 Jan 15;313(Pt 2):661–667. doi: 10.1042/bj3130661

Calmidazolium leads to an increase in the cytosolic Ca2+ concentration in Dictyostelium discoideum by induction of Ca2+ release from intracellular stores and influx of extracellular Ca2+.

C Schlatterer 1, R Schaloske 1
PMCID: PMC1216958  PMID: 8573107

Abstract

The Ca2+ stores of Dictyostelium discoideum amoebae take part in control of homoeostasis of the cytosolic free Ca2+ concentration ([Ca2+]i) and the cyclic-AMP-induced [Ca2+]i-signalling cascade. In order to characterize regulatory mechanisms of these stores, we incubated cells with the calmodulin antagonist calmidazolium. Measurement of permeabilized and intact cells in suspension with a Ca(2+)-sensitive electrode revealed that calmidazolium induced Ca2+ release from intracellular stores, influx of Ca2+ across the plasma membrane and subsequent efflux. In single fura-2-loaded cells calmidazolium evoked rapid and global transient elevations of [Ca2+]i. Other calmodulin antagonists (trifluoperazine, chlorpromazine, fendiline and W7) also induced transient elevations of [Ca2+]i, which were, however, slower and observed in fewer cells. The calmidazolium-induced influx of extracellular Ca2+ was inhibited by preincubation with 2,5-di-(t-butyl)-1, 4-hydroquinone (BHQ) and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl), both known to interact with pumps of the inositol 1,4,5-trisphosphate (IP3)-sensitive store, and by the V-type H(+)-ATPase inhibitor bafilomycin A1, which affects the acidosomal Ca2+ store. Incubation with pump inhibitors did not itself induce changes in [Ca2+]i. We conclude that the effects of calmidazolium are, at least in part, mediated by its calmodulin-antagonizing properties, that it acts by inducing Ca2+ release from filled storage compartments, and that its target of action is both the IP3-sensitive store and the acidosome; emptying of these stores leads to influx of extracellular Ca2+.

Full Text

The Full Text of this article is available as a PDF (591.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bumann J., Wurster B., Malchow D. Attractant-induced changes and oscillations of the extracellular Ca++ concentration in suspensions of differentiating Dictyostelium cells. J Cell Biol. 1984 Jan;98(1):173–178. doi: 10.1083/jcb.98.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Böhme R., Bumann J., Aeckerle S., Malchow D. A high-affinity plasma membrane Ca2+-ATPase in Dictyostelium discoideum: its relation to cAMP-induced Ca2+ fluxes. Biochim Biophys Acta. 1987 Nov 2;904(1):125–130. doi: 10.1016/0005-2736(87)90093-9. [DOI] [PubMed] [Google Scholar]
  3. Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  4. Clapham D. E. Intracellular calcium. Replenishing the stores. Nature. 1995 Jun 22;375(6533):634–635. doi: 10.1038/375634a0. [DOI] [PubMed] [Google Scholar]
  5. Condeelis J., Vahey M., Carboni J. M., DeMey J., Ogihara S. Properties of the 120,000- and 95,000-dalton actin-binding proteins from Dictyostelium discoideum and their possible functions in assembling the cytoplasmic matrix. J Cell Biol. 1984 Jul;99(1 Pt 2):119s–126s. doi: 10.1083/jcb.99.1.119s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flaadt H., Jaworski E., Malchow D. Evidence for two intracellular calcium pools in Dictyostelium: the cAMP-induced calcium influx is directed into a NBD-Cl- and 2,5-di-(tert-butyl)1,4-hydroquinone-sensitive pool. J Cell Sci. 1993 Aug;105(Pt 4):1131–1135. doi: 10.1242/jcs.105.4.1131. [DOI] [PubMed] [Google Scholar]
  7. Gross J. D. Developmental decisions in Dictyostelium discoideum. Microbiol Rev. 1994 Sep;58(3):330–351. doi: 10.1128/mr.58.3.330-351.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hope W. C., Chen T., Morgan D. W. Secretory phospholipase A2 inhibitors and calmodulin antagonists as inhibitors of cytosolic phospholipase A2. Agents Actions. 1993;39(Spec No):C39–C42. doi: 10.1007/BF01972714. [DOI] [PubMed] [Google Scholar]
  9. Jin W., Lo T. M., Loh H. H., Thayer S. A. U73122 inhibits phospholipase C-dependent calcium mobilization in neuronal cells. Brain Res. 1994 Apr 11;642(1-2):237–243. doi: 10.1016/0006-8993(94)90927-x. [DOI] [PubMed] [Google Scholar]
  10. Konijn T. M., Van De Meene J. G., Bonner J. T., Barkley D. S. The acrasin activity of adenosine-3',5'-cyclic phosphate. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1152–1154. doi: 10.1073/pnas.58.3.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Menz S., Bumann J., Jaworski E., Malchow D. Mutant analysis suggests that cyclic GMP mediates the cyclic AMP-induced Ca2+ uptake in Dictyostelium. J Cell Sci. 1991 May;99(Pt 1):187–191. doi: 10.1242/jcs.99.1.187. [DOI] [PubMed] [Google Scholar]
  12. Milne J. L., Coukell M. B. Identification of a high-affinity Ca2+ pump associated with endocytotic vesicles in Dictyostelium discoideum. Exp Cell Res. 1989 Nov;185(1):21–32. doi: 10.1016/0014-4827(89)90033-5. [DOI] [PubMed] [Google Scholar]
  13. Mukai H., Ito A., Kishima K., Kuno T., Tanaka C. Calmodulin antagonists differentiate between Ni(2+)- and Mn(2+)-stimulated phosphatase activity of calcineurin. J Biochem. 1991 Sep;110(3):402–406. doi: 10.1093/oxfordjournals.jbchem.a123593. [DOI] [PubMed] [Google Scholar]
  14. Noegel A. A., Leiting B., Witke W., Gurniak C., Harloff C., Hartmann H., Wiesmüller E., Schleicher M. Biological roles of actin-binding proteins in Dictyostelium discoideum examined using genetic techniques. Cell Motil Cytoskeleton. 1989;14(1):69–74. doi: 10.1002/cm.970140114. [DOI] [PubMed] [Google Scholar]
  15. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  16. Rooney E. K., Gross J. D. ATP-driven Ca2+/H+ antiport in acid vesicles from Dictyostelium. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8025–8029. doi: 10.1073/pnas.89.17.8025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rooney E. K., Gross J. D., Satre M. Characterisation of an intracellular Ca2+ pump in Dictyostelium. Cell Calcium. 1994 Dec;16(6):509–522. doi: 10.1016/0143-4160(94)90081-7. [DOI] [PubMed] [Google Scholar]
  18. Saran S., Nakao H., Tasaka M., Iida H., Tsuji F. I., Nanjundiah V., Takeuchi I. Intracellular free calcium level and its response to cAMP stimulation in developing Dictyostelium cells transformed with jellyfish apoaequorin cDNA. FEBS Lett. 1994 Jan 3;337(1):43–47. doi: 10.1016/0014-5793(94)80626-8. [DOI] [PubMed] [Google Scholar]
  19. Schlatterer C., Buravkov S., Zierold K., Knoll G. Calcium-sequestering organelles of Dictyostelium discoideum: changes in element content during early development as measured by electron probe X-ray microanalysis. Cell Calcium. 1994 Aug;16(2):101–111. doi: 10.1016/0143-4160(94)90005-1. [DOI] [PubMed] [Google Scholar]
  20. Schlatterer C., Gollnick F., Schmidt E., Meyer R., Knoll G. Challenge with high concentrations of cyclic AMP induces transient changes in the cytosolic free calcium concentration in Dictyostelium discoideum. J Cell Sci. 1994 Aug;107(Pt 8):2107–2115. doi: 10.1242/jcs.107.8.2107. [DOI] [PubMed] [Google Scholar]
  21. Schlatterer C., Knoll G., Malchow D. Intracellular calcium during chemotaxis of Dictyostelium discoideum: a new fura-2 derivative avoids sequestration of the indicator and allows long-term calcium measurements. Eur J Cell Biol. 1992 Jun;58(1):172–181. [PubMed] [Google Scholar]
  22. Somogyi R., Stucki J. W. Hormone-induced calcium oscillations in liver cells can be explained by a simple one pool model. J Biol Chem. 1991 Jun 15;266(17):11068–11077. [PubMed] [Google Scholar]
  23. Tsien R. W., Tsien R. Y. Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 1990;6:715–760. doi: 10.1146/annurev.cb.06.110190.003435. [DOI] [PubMed] [Google Scholar]
  24. Unterweger N., Schlatterer C. Introduction of calcium buffers into the cytosol of Dictyostelium discoideum amoebae alters cell morphology and inhibits chemotaxis. Cell Calcium. 1995 Feb;17(2):97–110. doi: 10.1016/0143-4160(95)90079-9. [DOI] [PubMed] [Google Scholar]
  25. Van Haastert P. J. Determination of inositol 1,4,5-trisphosphate levels in Dictyostelium by isotope dilution assay. Anal Biochem. 1989 Feb 15;177(1):115–119. doi: 10.1016/0003-2697(89)90024-9. [DOI] [PubMed] [Google Scholar]
  26. Watts D. J., Ashworth J. M. Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem J. 1970 Sep;119(2):171–174. doi: 10.1042/bj1190171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Willems P. H., Van de Put F. H., Engbersen R., Bosch R. R., Van Hoof H. J., de Pont J. J. Induction of Ca2+ oscillations by selective, U73122-mediated, depletion of inositol-trisphosphate-sensitive Ca2+ stores in rabbit pancreatic acinar cells. Pflugers Arch. 1994 Jun;427(3-4):233–243. doi: 10.1007/BF00374529. [DOI] [PubMed] [Google Scholar]
  28. Wuytack F., Raeymaekers L. The Ca(2+)-transport ATPases from the plasma membrane. J Bioenerg Biomembr. 1992 Jun;24(3):285–300. doi: 10.1007/BF00768849. [DOI] [PubMed] [Google Scholar]
  29. Zhang B. X., Zhao H., Muallem S. Ca(2+)-dependent kinase and phosphatase control inositol 1,4,5-trisphosphate-mediated Ca2+ release. Modification by agonist stimulation. J Biol Chem. 1993 May 25;268(15):10997–11001. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES