Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jan 15;313(Pt 2):683–689. doi: 10.1042/bj3130683

Comparison of lipid aggregation and self-aggregation activities of pulmonary surfactant-associated protein A.

M L Ruano 1, E Miguel 1, J Perez-Gil 1, C Casals 1
PMCID: PMC1216961  PMID: 8573110

Abstract

1. We compared the Ca2+ dependence of the self-aggregation of surfactant protein A (SP-A) with that of vesicle aggregation induced by SP-A. The Ca2+ concentration required for half-maximal activity of lipid aggregation was 0.74 +/- 0.29 microM (n = 4) for pig SP-A and 98 +/- 5 microM (n = 2) for dog SP-A. In contrast, the threshold concentration of Ca2+ required to induce self-association of both pig and dog SP-A was 0.5 mM. The Ca2+ concentration needed for half-maximal self-association was 2.36 +/- 0.15 mM (n = 4) and 0.70 +/- 0.06 mM (n = 2) for pig and dog SP-A respectively. 2. We also compared the effect of Ca2+ on the trypsin sensitivity of lipid-free and membrane-bound SP-A. At 1 microM Ca2+, the tryptic digestion patterns of dog and pig lipid-free SP-A were quite different. Dog SP-A was very sensitive to proteolysis, being almost completely digested by 30 min, while pig SP-A was very resistant, even after 12 h. After protein aggregation of lipid-free SP-A (at 5 mM Ca2+), the accessibility of the trypsin cleavage targets of the protein depended on the SP-A species (self-aggregated pig SP-A became more sensitive to degradation than its non-aggregated form, whereas self-aggregated dog SP-A was less susceptible). In contrast, membrane-bound SP-A, from either pig or dog, was clearly protected from trypsin degradation at both low (1 microM) or high (1 mM) Ca2+ concentrations. The protection was slightly higher at 1 mM Ca2+ when the extent of lipid/SP-A aggregates was maximal. 3. On the other hand, vesicle aggregation activity of SP-A was decreased by 30-40% by removing the oligosaccharide moiety of the protein, whereas self-aggregation was not influenced by deglycosylation. The presence of mannan (at concentrations not lower than 10 micrograms/microliters) decreased vesicle aggregation induced by dog and pig SP-A by a mechanism that is independent of the binding of mannan to the carbohydrate-binding domain of SP-A. Self-aggregation of SP-A was not affected by the presence of sugars. 4. From these results, we conclude that: (1) the process of lipid aggregation induced by SP-A cannot be correlated with that of self-association of the protein occurring at supramillimolar concentrations of Ca2+; and (2) the N-linked carbohydrate moiety of SP-A and the ability of SP-A to bind carbohydrates are not involved in lipid aggregation.

Full Text

The Full Text of this article is available as a PDF (556.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Casals C., Herrera L., Miguel E., Garcia-Barreno P., Municio A. M. Comparison between intra- and extracellular surfactant in respiratory distress induced by oleic acid. Biochim Biophys Acta. 1989 Jun 8;1003(2):201–203. doi: 10.1016/0005-2760(89)90256-7. [DOI] [PubMed] [Google Scholar]
  2. Casals C., Miguel E., Perez-Gil J. Tryptophan fluorescence study on the interaction of pulmonary surfactant protein A with phospholipid vesicles. Biochem J. 1993 Dec 15;296(Pt 3):585–593. doi: 10.1042/bj2960585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Casals C., Ruano M. L., Miguel E., Sanchez P., Perez-Gil J. Surfactant protein-C enhances lipid aggregation activity of surfactant protein-A. Biochem Soc Trans. 1994 Aug;22(3):370S–370S. doi: 10.1042/bst022370s. [DOI] [PubMed] [Google Scholar]
  4. Childs R. A., Wright J. R., Ross G. F., Yuen C. T., Lawson A. M., Chai W., Drickamer K., Feizi T. Specificity of lung surfactant protein SP-A for both the carbohydrate and the lipid moieties of certain neutral glycolipids. J Biol Chem. 1992 May 15;267(14):9972–9979. [PubMed] [Google Scholar]
  5. Drickamer K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem. 1988 Jul 15;263(20):9557–9560. [PubMed] [Google Scholar]
  6. Efrati H., Hawgood S., Williams M. C., Hong K., Benson B. J. Divalent cation and hydrogen ion effects on the structure and surface activity of pulmonary surfactant. Biochemistry. 1987 Dec 1;26(24):7986–7993. doi: 10.1021/bi00398a066. [DOI] [PubMed] [Google Scholar]
  7. Goodrich R. P., Crowe J. H., Crowe L. M., Baldeschwieler J. D. Alterations in membrane surfaces induced by attachment of carbohydrates. Biochemistry. 1991 May 28;30(21):5313–5318. doi: 10.1021/bi00235a026. [DOI] [PubMed] [Google Scholar]
  8. Haagsman H. P., Elfring R. H., van Buel B. L., Voorhout W. F. The lung lectin surfactant protein A aggregates phospholipid vesicles via a novel mechanism. Biochem J. 1991 Apr 1;275(Pt 1):273–276. doi: 10.1042/bj2750273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haagsman H. P., Sargeant T., Hauschka P. V., Benson B. J., Hawgood S. Binding of calcium to SP-A, a surfactant-associated protein. Biochemistry. 1990 Sep 25;29(38):8894–8900. doi: 10.1021/bi00490a003. [DOI] [PubMed] [Google Scholar]
  10. Haagsman H. P., White R. T., Schilling J., Lau K., Benson B. J., Golden J., Hawgood S., Clements J. A. Studies of the structure of lung surfactant protein SP-A. Am J Physiol. 1989 Dec;257(6 Pt 1):L421–L429. doi: 10.1152/ajplung.1989.257.6.L421. [DOI] [PubMed] [Google Scholar]
  11. Haas C., Voss T., Engel J. Assembly and disulfide rearrangement of recombinant surfactant protein A in vitro. Eur J Biochem. 1991 May 8;197(3):799–803. doi: 10.1111/j.1432-1033.1991.tb15974.x. [DOI] [PubMed] [Google Scholar]
  12. Haurum J. S., Thiel S., Haagsman H. P., Laursen S. B., Larsen B., Jensenius J. C. Studies on the carbohydrate-binding characteristics of human pulmonary surfactant-associated protein A and comparison with two other collectins: mannan-binding protein and conglutinin. Biochem J. 1993 Aug 1;293(Pt 3):873–878. doi: 10.1042/bj2930873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hawgood S., Benson B. J., Hamilton R. L., Jr Effects of a surfactant-associated protein and calcium ions on the structure and surface activity of lung surfactant lipids. Biochemistry. 1985 Jan 1;24(1):184–190. doi: 10.1021/bi00322a026. [DOI] [PubMed] [Google Scholar]
  14. Hawgood S., Benson B. J., Schilling J., Damm D., Clements J. A., White R. T. Nucleotide and amino acid sequences of pulmonary surfactant protein SP 18 and evidence for cooperation between SP 18 and SP 28-36 in surfactant lipid adsorption. Proc Natl Acad Sci U S A. 1987 Jan;84(1):66–70. doi: 10.1073/pnas.84.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hawgood S., Shiffer K. Structures and properties of the surfactant-associated proteins. Annu Rev Physiol. 1991;53:375–394. doi: 10.1146/annurev.ph.53.030191.002111. [DOI] [PubMed] [Google Scholar]
  16. King R. J., Carmichael M. C., Horowitz P. M. Reassembly of lipid-protein complexes of pulmonary surfactant. Proposed mechanism of interaction. J Biol Chem. 1983 Sep 10;258(17):10672–10680. [PubMed] [Google Scholar]
  17. King R. J., Simon D., Horowitz P. M. Aspects of secondary and quaternary structure of surfactant protein A from canine lung. Biochim Biophys Acta. 1989 Feb 20;1001(3):294–301. doi: 10.1016/0005-2760(89)90114-8. [DOI] [PubMed] [Google Scholar]
  18. Kuroki Y., Akino T. Pulmonary surfactant protein A (SP-A) specifically binds dipalmitoylphosphatidylcholine. J Biol Chem. 1991 Feb 15;266(5):3068–3073. [PubMed] [Google Scholar]
  19. Kuroki Y., Akino T. Roles of collagenous domain and oligosaccharide moiety of pulmonary surfactant protein A in interactions with phospholipids. Biochem Int. 1991 May;24(2):225–233. [PubMed] [Google Scholar]
  20. Kuroki Y., McCormack F. X., Ogasawara Y., Mason R. J., Voelker D. R. Epitope mapping for monoclonal antibodies identifies functional domains of pulmonary surfactant protein A that interact with lipids. J Biol Chem. 1994 Nov 25;269(47):29793–29800. [PubMed] [Google Scholar]
  21. Kuroki Y., Voelker D. R. Pulmonary surfactant proteins. J Biol Chem. 1994 Oct 21;269(42):25943–25946. [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lee C. W., Das Gupta S. K., Mattai J., Shipley G. G., Abdel-Mageed O. H., Makriyannis A., Griffin R. G. Characterization of the L lambda phase in trehalose-stabilized dry membranes by solid-state NMR and X-ray diffraction. Biochemistry. 1989 Jun 13;28(12):5000–5009. doi: 10.1021/bi00438a015. [DOI] [PubMed] [Google Scholar]
  24. McCormack F. X., Calvert H. M., Watson P. A., Smith D. L., Mason R. J., Voelker D. R. The structure and function of surfactant protein A. Hydroxyproline- and carbohydrate-deficient mutant proteins. J Biol Chem. 1994 Feb 25;269(8):5833–5841. [PubMed] [Google Scholar]
  25. McCormack F. X., Kuroki Y., Stewart J. J., Mason R. J., Voelker D. R. Surfactant protein A amino acids Glu195 and Arg197 are essential for receptor binding, phospholipid aggregation, regulation of secretion, and the facilitated uptake of phospholipid by type II cells. J Biol Chem. 1994 Nov 25;269(47):29801–29807. [PubMed] [Google Scholar]
  26. Nielson D. W., Lewis M. B. Calcium increases in pulmonary alveolar fluid in lambs at birth. Pediatr Res. 1988 Sep;24(3):322–325. doi: 10.1203/00006450-198809000-00009. [DOI] [PubMed] [Google Scholar]
  27. Ogasawara Y., McCormack F. X., Mason R. J., Voelker D. R. Chimeras of surfactant proteins A and D identify the carbohydrate recognition domains as essential for phospholipid interaction. J Biol Chem. 1994 Nov 25;269(47):29785–29792. [PubMed] [Google Scholar]
  28. Poulain F. R., Allen L., Williams M. C., Hamilton R. L., Hawgood S. Effects of surfactant apolipoproteins on liposome structure: implications for tubular myelin formation. Am J Physiol. 1992 Jun;262(6 Pt 1):L730–L739. doi: 10.1152/ajplung.1992.262.6.L730. [DOI] [PubMed] [Google Scholar]
  29. Ross G. F., Sawyer J., O'Connor T., Whitsett J. A. Intermolecular cross-links mediate aggregation of phospholipid vesicles by pulmonary surfactant protein SP-A. Biochemistry. 1991 Jan 22;30(3):858–865. doi: 10.1021/bi00217a040. [DOI] [PubMed] [Google Scholar]
  30. Schoenmakers T. J., Visser G. J., Flik G., Theuvenet A. P. CHELATOR: an improved method for computing metal ion concentrations in physiological solutions. Biotechniques. 1992 Jun;12(6):870-4, 876-9. [PubMed] [Google Scholar]
  31. Suzuki Y., Fujita Y., Kogishi K. Reconstitution of tubular myelin from synthetic lipids and proteins associated with pig pulmonary surfactant. Am Rev Respir Dis. 1989 Jul;140(1):75–81. doi: 10.1164/ajrccm/140.1.75. [DOI] [PubMed] [Google Scholar]
  32. Voss T., Eistetter H., Schäfer K. P., Engel J. Macromolecular organization of natural and recombinant lung surfactant protein SP 28-36. Structural homology with the complement factor C1q. J Mol Biol. 1988 May 5;201(1):219–227. doi: 10.1016/0022-2836(88)90448-2. [DOI] [PubMed] [Google Scholar]
  33. White R. T., Damm D., Miller J., Spratt K., Schilling J., Hawgood S., Benson B., Cordell B. Isolation and characterization of the human pulmonary surfactant apoprotein gene. 1985 Sep 26-Oct 2Nature. 317(6035):361–363. doi: 10.1038/317361a0. [DOI] [PubMed] [Google Scholar]
  34. Williams M. C., Hawgood S., Hamilton R. L. Changes in lipid structure produced by surfactant proteins SP-A, SP-B, and SP-C. Am J Respir Cell Mol Biol. 1991 Jul;5(1):41–50. doi: 10.1165/ajrcmb/5.1.41. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES