Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Feb 1;313(Pt 3):711–715. doi: 10.1042/bj3130711

Peptidoglycan structure of Enterococcus faecium expressing vancomycin resistance of the VanB type.

D Billot-Klein 1, D Shlaes 1, D Bryant 1, D Bell 1, J van Heijenoort 1, L Gutmann 1
PMCID: PMC1216968  PMID: 8611145

Abstract

Resistance to glycopeptide antibiotics in enterococci is due to the synthesis of UDP-MurNAc-tetrapeptide-D-lactate (where Mur is muramic acid) replacing the normal UDP-MurNAc-pentapeptide precursor. The peptidoglycan structures of an inducible VanB-type glycopeptide-resistant Enterococcus faecium, D366, and its constitutively resistant derivative, MT9, were determined. Using HPLC, 17 muropeptides were identified and were present regardless of whether resistance was expressed or not. The structures of 15 muropeptides were determined using MS and amino acid analysis. The cross-bridge between D-alanine and L-lysine consisted of one asparagine. No monomer pentapeptide or tetrapeptide-D-lactate could be identified. These results obtained with D366 (non-induced) and MT9 indicate that, in the absence of vancomycin, the cell wall synthetic machinery of E. faecium can process the lactate-containing precursor as efficiently as the normal pentapeptide. In contrast, the presence of subinhibitory inducing concentrations of vancomycin interfered with the synthesis of oligomers.

Full Text

The Full Text of this article is available as a PDF (407.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen N. E., Hobbs J. N., Jr, Richardson J. M., Riggin R. M. Biosynthesis of modified peptidoglycan precursors by vancomycin-resistant Enterococcus faecium. FEMS Microbiol Lett. 1992 Nov 1;77(1-3):109–115. doi: 10.1016/0378-1097(92)90140-j. [DOI] [PubMed] [Google Scholar]
  2. Arthur M., Courvalin P. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother. 1993 Aug;37(8):1563–1571. doi: 10.1128/aac.37.8.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arthur M., Depardieu F., Snaith H. A., Reynolds P. E., Courvalin P. Contribution of VanY D,D-carboxypeptidase to glycopeptide resistance in Enterococcus faecalis by hydrolysis of peptidoglycan precursors. Antimicrob Agents Chemother. 1994 Sep;38(9):1899–1903. doi: 10.1128/aac.38.9.1899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bardin C., Sinha R. K., Kalomiris E., Neuhaus F. C. Biosynthesis of peptidoglycan in Gaffkya homari: processing of nascent glycan by reactivated membranes. J Bacteriol. 1984 Feb;157(2):398–404. doi: 10.1128/jb.157.2.398-404.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Billot-Klein D., Gutmann L., Collatz E., van Heijenoort J. Analysis of peptidoglycan precursors in vancomycin-resistant enterococci. Antimicrob Agents Chemother. 1992 Jul;36(7):1487–1490. doi: 10.1128/aac.36.7.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Billot-Klein D., Gutmann L., Sablé S., Guittet E., van Heijenoort J. Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VANB-type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, and Enterococcus gallinarum. J Bacteriol. 1994 Apr;176(8):2398–2405. doi: 10.1128/jb.176.8.2398-2405.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Evers S., Reynolds P. E., Courvalin P. Sequence of the vanB and ddl genes encoding D-alanine:D-lactate and D-alanine:D-alanine ligases in vancomycin-resistant Enterococcus faecalis V583. Gene. 1994 Mar 11;140(1):97–102. doi: 10.1016/0378-1119(94)90737-4. [DOI] [PubMed] [Google Scholar]
  8. Evers S., Sahm D. F., Courvalin P. The vanB gene of vancomycin-resistant Enterococcus faecalis V583 is structurally related to genes encoding D-Ala:D-Ala ligases and glycopeptide-resistance proteins VanA and VanC. Gene. 1993 Feb 14;124(1):143–144. doi: 10.1016/0378-1119(93)90779-3. [DOI] [PubMed] [Google Scholar]
  9. Glauner B. Separation and quantification of muropeptides with high-performance liquid chromatography. Anal Biochem. 1988 Aug 1;172(2):451–464. doi: 10.1016/0003-2697(88)90468-x. [DOI] [PubMed] [Google Scholar]
  10. Gold H. S., Unal S., Cercenado E., Thauvin-Eliopoulos C., Eliopoulos G. M., Wennersten C. B., Moellering R. C., Jr A gene conferring resistance to vancomycin but not teicoplanin in isolates of Enterococcus faecalis and Enterococcus faecium demonstrates homology with vanB, vanA, and vanC genes of enterococci. Antimicrob Agents Chemother. 1993 Aug;37(8):1604–1609. doi: 10.1128/aac.37.8.1604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gutmann L., Billot-Klein D., al-Obeid S., Klare I., Francoual S., Collatz E., van Heijenoort J. Inducible carboxypeptidase activity in vancomycin-resistant enterococci. Antimicrob Agents Chemother. 1992 Jan;36(1):77–80. doi: 10.1128/aac.36.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gutmann L., al-Obeid S., Billot-Klein D., Guerrier M. L., Collatz E. Synergy and resistance to synergy between beta-lactam antibiotics and glycopeptides against glycopeptide-resistant strains of Enterococcus faecium. Antimicrob Agents Chemother. 1994 Apr;38(4):824–829. doi: 10.1128/aac.38.4.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Handwerger S., Pucci M. J., Volk K. J., Liu J., Lee M. S. The cytoplasmic peptidoglycan precursor of vancomycin-resistant Enterococcus faecalis terminates in lactate. J Bacteriol. 1992 Sep;174(18):5982–5984. doi: 10.1128/jb.174.18.5982-5984.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liu J., Volk K. J., Lee M. S., Pucci M., Handwerger S. Binding studies of vancomycin to the cytoplasmic peptidoglycan precursors by affinity capillary electrophoresis. Anal Chem. 1994 Jul 15;66(14):2412–2416. doi: 10.1021/ac00086a031. [DOI] [PubMed] [Google Scholar]
  15. Messer J., Reynolds P. E. Modified peptidoglycan precursors produced by glycopeptide-resistant enterococci. FEMS Microbiol Lett. 1992 Jul 1;73(1-2):195–200. doi: 10.1016/0378-1097(92)90608-q. [DOI] [PubMed] [Google Scholar]
  16. Rasmussen J. R., Strominger J. L. Utilization of a depsipeptide substrate for trapping acyl-enzyme intermediates of penicillin-sensitive D-alanine carboxypeptidases. Proc Natl Acad Sci U S A. 1978 Jan;75(1):84–88. doi: 10.1073/pnas.75.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reynolds P. E., Depardieu F., Dutka-Malen S., Arthur M., Courvalin P. Glycopeptide resistance mediated by enterococcal transposon Tn1546 requires production of VanX for hydrolysis of D-alanyl-D-alanine. Mol Microbiol. 1994 Sep;13(6):1065–1070. doi: 10.1111/j.1365-2958.1994.tb00497.x. [DOI] [PubMed] [Google Scholar]
  18. Reynolds P. E. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis. 1989 Nov;8(11):943–950. doi: 10.1007/BF01967563. [DOI] [PubMed] [Google Scholar]
  19. Schleifer K. H., Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972 Dec;36(4):407–477. doi: 10.1128/br.36.4.407-477.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sinha R. K., Neuhaus F. C. Biosynthesis of peptidoglycan in Gaffkya homari: on the target(s) of benzylpenicillin. Antimicrob Agents Chemother. 1991 Sep;35(9):1753–1759. doi: 10.1128/aac.35.9.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Williamson R., Al-Obeid S., Shlaes J. H., Goldstein F. W., Shlaes D. M. Inducible resistance to vancomycin in Enterococcus faecium D366. J Infect Dis. 1989 Jun;159(6):1095–1104. doi: 10.1093/infdis/159.6.1095. [DOI] [PubMed] [Google Scholar]
  22. al-Obeid S., Gutmann L., Shlaes D. M., Williamson R., Collatz E. Comparison of vancomycin-inducible proteins from four strains of Enterococci. FEMS Microbiol Lett. 1990 Jun 15;58(1):101–105. doi: 10.1016/0378-1097(90)90110-c. [DOI] [PubMed] [Google Scholar]
  23. de Jonge B. L., Tomasz A. Abnormal peptidoglycan produced in a methicillin-resistant strain of Staphylococcus aureus grown in the presence of methicillin: functional role for penicillin-binding protein 2A in cell wall synthesis. Antimicrob Agents Chemother. 1993 Feb;37(2):342–346. doi: 10.1128/aac.37.2.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. el Kharroubi A., Piras G., Jacques P., Szabo I., Van Beeumen J., Coyette J., Ghuysen J. M. Active-site and membrane topology of the DD-peptidase/penicillin-binding protein no. 6 of Enterococcus hirae (Streptococcus faecium) A.T.C.C. 9790. Biochem J. 1989 Sep 1;262(2):457–462. doi: 10.1042/bj2620457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. van Heijenoort Y., Gómez M., Derrien M., Ayala J., van Heijenoort J. Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP 1b and PBP 3. J Bacteriol. 1992 Jun;174(11):3549–3557. doi: 10.1128/jb.174.11.3549-3557.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES