Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Feb 1;313(Pt 3):761–767. doi: 10.1042/bj3130761

Sequence and biochemical similarities between the luciferases of the glow-worm Lampyris noctiluca and the firefly Photinus pyralis.

G B Sala-Newby 1, C M Thomson 1, A K Campbell 1
PMCID: PMC1216975  PMID: 8611152

Abstract

A full-length clone encoding Lampyris noctiluca (British glow-worm) luciferase was isolated from a complementary DNA (cDNA) expression library constructed with MRNA extracted from light organs. The luciferase was a 547-residue protein, as deduced from the nucleotide sequence. The protein was closely related to those of other lampyrid beetles, the similarity to Photinus pyralis luciferase being 84% and to Luciola 67%. In contrast, Lampyris luciferase had less sequence similarity to the luciferases of the click beetle Pyrophorus, at 48%. Engineering Lampyris luciferase in vitro showed that the C-terminal peptide containing 12 amino acids in Photinus and 9 amino acids in Lampyris was essential for bioluminescence. The pH optimum and the Km values for ATP and luciferin were similar for both Photinus and Lampyris luciferases, although the light emitted by the latter shifted towards the blue and was less stable at 37 degrees C. It was concluded that the molecular and biochemical properties were not sufficient to explain the glowing or flashing of the two beetles Lampyris and Photinus.

Full Text

The Full Text of this article is available as a PDF (894.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babbitt P. C., Kenyon G. L., Martin B. M., Charest H., Slyvestre M., Scholten J. D., Chang K. H., Liang P. H., Dunaway-Mariano D. Ancestry of the 4-chlorobenzoate dehalogenase: analysis of amino acid sequence identities among families of acyl:adenyl ligases, enoyl-CoA hydratases/isomerases, and acyl-CoA thioesterases. Biochemistry. 1992 Jun 23;31(24):5594–5604. doi: 10.1021/bi00139a024. [DOI] [PubMed] [Google Scholar]
  2. DeLuca M., McElroy W. D. Kinetics of the firefly luciferase catalyzed reactions. Biochemistry. 1974 Feb 26;13(5):921–925. doi: 10.1021/bi00702a015. [DOI] [PubMed] [Google Scholar]
  3. Devine J. H., Kutuzova G. D., Green V. A., Ugarova N. N., Baldwin T. O. Luciferase from the east European firefly Luciola mingrelica: cloning and nucleotide sequence of the cDNA, overexpression in Escherichia coli and purification of the enzyme. Biochim Biophys Acta. 1993 May 28;1173(2):121–132. doi: 10.1016/0167-4781(93)90172-a. [DOI] [PubMed] [Google Scholar]
  4. Gates B. J., DeLuca M. The production of oxyluciferin during the firefly luciferase light reaction. Arch Biochem Biophys. 1975 Aug;169(2):616–621. doi: 10.1016/0003-9861(75)90205-2. [DOI] [PubMed] [Google Scholar]
  5. Gould S. J., Keller G. A., Hosken N., Wilkinson J., Subramani S. A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol. 1989 May;108(5):1657–1664. doi: 10.1083/jcb.108.5.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kajiyama N., Nakano E. Isolation and characterization of mutants of firefly luciferase which produce different colors of light. Protein Eng. 1991 Aug;4(6):691–693. doi: 10.1093/protein/4.6.691. [DOI] [PubMed] [Google Scholar]
  7. McElroy W. D. The Energy Source for Bioluminescence in an Isolated System. Proc Natl Acad Sci U S A. 1947 Nov;33(11):342–345. doi: 10.1073/pnas.33.11.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nathanson J. A. Cholera toxin, cyclic AMP, and the firefly flash. J Cyclic Nucleotide Protein Phosphor Res. 1985;10(2):157–165. [PubMed] [Google Scholar]
  9. Nathanson J. A. Octopamine receptors, adenosine 3',5'-monophosphate, and neural control of firefly flashing. Science. 1979 Jan 5;203(4375):65–68. doi: 10.1126/science.214856. [DOI] [PubMed] [Google Scholar]
  10. Palazzolo M. J., Hamilton B. A., Ding D. L., Martin C. H., Mead D. A., Mierendorf R. C., Raghavan K. V., Meyerowitz E. M., Lipshitz H. D. Phage lambda cDNA cloning vectors for subtractive hybridization, fusion-protein synthesis and Cre-loxP automatic plasmid subcloning. Gene. 1990 Mar 30;88(1):25–36. doi: 10.1016/0378-1119(90)90056-w. [DOI] [PubMed] [Google Scholar]
  11. RHODES W. C., McELROY W. D. The synthesis and function of luciferyl-adenylate and oxyluciferyl-adenylate. J Biol Chem. 1958 Dec;233(6):1528–1537. [PubMed] [Google Scholar]
  12. Sala-Newby G. B., Campbell A. K. Engineering a bioluminescent indicator for cyclic AMP-dependent protein kinase. Biochem J. 1991 Nov 1;279(Pt 3):727–732. doi: 10.1042/bj2790727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sala-Newby G. B., Campbell A. K. Stepwise removal of the C-terminal 12 amino acids of firefly luciferase results in graded loss of activity. Biochim Biophys Acta. 1994 May 18;1206(1):155–160. doi: 10.1016/0167-4838(94)90084-1. [DOI] [PubMed] [Google Scholar]
  14. Sala-Newby G., Campbell A. K. Engineering firefly luciferase as an indicator of cyclic AMP-dependent protein kinase in living cells. FEBS Lett. 1992 Jul 28;307(2):241–244. doi: 10.1016/0014-5793(92)80776-d. [DOI] [PubMed] [Google Scholar]
  15. Sala-Newby G., Kalsheker N., Campbell A. K. Removal of twelve C-terminal amino acids from firefly luciferase abolishes activity. Biochem Biophys Res Commun. 1990 Oct 30;172(2):477–482. doi: 10.1016/0006-291x(90)90697-l. [DOI] [PubMed] [Google Scholar]
  16. Seliger H. H., McElroy W. D. THE COLORS OF FIREFLY BIOLUMINESCENCE: ENZYME CONFIGURATION AND SPECIES SPECIFICITY. Proc Natl Acad Sci U S A. 1964 Jul;52(1):75–81. doi: 10.1073/pnas.52.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shimomura O. Cause of spectral variation in the luminescence of semisynthetic aequorins. Biochem J. 1995 Mar 1;306(Pt 2):537–543. doi: 10.1042/bj3060537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tatsumi H., Kajiyama N., Nakano E. Molecular cloning and expression in Escherichia coli of a cDNA clone encoding luciferase of a firefly, Luciola lateralis. Biochim Biophys Acta. 1992 Jun 15;1131(2):161–165. doi: 10.1016/0167-4781(92)90071-7. [DOI] [PubMed] [Google Scholar]
  19. Tatsumi H., Masuda T., Kajiyama N., Nakano E. Luciferase cDNA from Japanese firefly, Luciola cruciata: cloning, structure and expression in Escherichia coli. J Biolumin Chemilumin. 1989 Apr-Jun;3(2):75–78. doi: 10.1002/bio.1170030208. [DOI] [PubMed] [Google Scholar]
  20. Thompson J. F., Hayes L. S., Lloyd D. B. Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene. 1991 Jul 22;103(2):171–177. doi: 10.1016/0378-1119(91)90270-l. [DOI] [PubMed] [Google Scholar]
  21. White M. R., Masuko M., Amet L., Elliott G., Braddock M., Kingsman A. J., Kingsman S. M. Real-time analysis of the transcriptional regulation of HIV and hCMV promoters in single mammalian cells. J Cell Sci. 1995 Feb;108(Pt 2):441–455. doi: 10.1242/jcs.108.2.441. [DOI] [PubMed] [Google Scholar]
  22. Wood K. V., Lam Y. A., McElroy W. D., Seliger H. H. Bioluminescent click beetles revisited. J Biolumin Chemilumin. 1989 Jul;4(1):31–39. doi: 10.1002/bio.1170040110. [DOI] [PubMed] [Google Scholar]
  23. Wood K. V., Lam Y. A., Seliger H. H., McElroy W. D. Complementary DNA coding click beetle luciferases can elicit bioluminescence of different colors. Science. 1989 May 12;244(4905):700–702. doi: 10.1126/science.2655091. [DOI] [PubMed] [Google Scholar]
  24. de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES