Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Feb 1;313(Pt 3):815–819. doi: 10.1042/bj3130815

Ca2+ entry modulates oscillation frequency by triggering Ca2+ release.

T J Shuttleworth 1, J L Thompson 1
PMCID: PMC1216983  PMID: 8611160

Abstract

As in many cells, the frequency of agonist-induced cytosolic Ca2+ concentration ([Ca2+]1) oscillations in exocrine avian nasal gland cells is dependent on the rate of Ca2+ entry. Experiments reveal that the initiation of each oscillatory spike is independent of the relative fullness of the stores and, furthermore, the oscillating pool is normally fully refilled by the end of each [Ca2+]1 spike. Therefore, contrary to current models, the interspike interval (which essentially sets the frequency) does not reflect the time taken to recharge the oscillating stores. Instead, the data show that it is the previously demonstrated role that Ca2+ entry plays in triggering the repetitive release of Ca2+ from the oscillating stores, rather than the recharging of those stores, that provides the basis for the observed effects of Ca2+ entry rate on oscillation frequency.

Full Text

The Full Text of this article is available as a PDF (376.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atri A., Amundson J., Clapham D., Sneyd J. A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys J. 1993 Oct;65(4):1727–1739. doi: 10.1016/S0006-3495(93)81191-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. J. Calcium oscillations. J Biol Chem. 1990 Jun 15;265(17):9583–9586. [PubMed] [Google Scholar]
  3. Berridge M. J. Cytoplasmic calcium oscillations: a two pool model. Cell Calcium. 1991 Feb-Mar;12(2-3):63–72. doi: 10.1016/0143-4160(91)90009-4. [DOI] [PubMed] [Google Scholar]
  4. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  5. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  6. Berridge M. J. Relationship between latency and period for 5-hydroxytryptamine-induced membrane responses in the Calliphora salivary gland. Biochem J. 1994 Sep 1;302(Pt 2):545–550. doi: 10.1042/bj3020545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crawford K. M., Stuenkel E. L., Ernst S. A. Agonist-induced frequency modulation of Ca2+ oscillations in salt gland secretory cells. Am J Physiol. 1991 Jul;261(1 Pt 1):C177–C184. doi: 10.1152/ajpcell.1991.261.1.C177. [DOI] [PubMed] [Google Scholar]
  8. Cuthbertson K. S., Chay T. R. Modelling receptor-controlled intracellular calcium oscillators. Cell Calcium. 1991 Feb-Mar;12(2-3):97–109. doi: 10.1016/0143-4160(91)90012-4. [DOI] [PubMed] [Google Scholar]
  9. De Young G. W., Keizer J. A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9895–9899. doi: 10.1073/pnas.89.20.9895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dupont G., Goldbeter A. One-pool model for Ca2+ oscillations involving Ca2+ and inositol 1,4,5-trisphosphate as co-agonists for Ca2+ release. Cell Calcium. 1993 Apr;14(4):311–322. doi: 10.1016/0143-4160(93)90052-8. [DOI] [PubMed] [Google Scholar]
  11. Girard S., Clapham D. Acceleration of intracellular calcium waves in Xenopus oocytes by calcium influx. Science. 1993 Apr 9;260(5105):229–232. doi: 10.1126/science.8385801. [DOI] [PubMed] [Google Scholar]
  12. Goldbeter A., Dupont G., Berridge M. J. Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1461–1465. doi: 10.1073/pnas.87.4.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hashii M., Nozawa Y., Higashida H. Bradykinin-induced cytosolic Ca2+ oscillations and inositol tetrakisphosphate-induced Ca2+ influx in voltage-clamped ras-transformed NIH/3T3 fibroblasts. J Biol Chem. 1993 Sep 15;268(26):19403–19410. [PubMed] [Google Scholar]
  14. Jacob R. Calcium oscillations in endothelial cells. Cell Calcium. 1991 Feb-Mar;12(2-3):127–134. doi: 10.1016/0143-4160(91)90014-6. [DOI] [PubMed] [Google Scholar]
  15. Kawanishi T., Blank L. M., Harootunian A. T., Smith M. T., Tsien R. Y. Ca2+ oscillations induced by hormonal stimulation of individual fura-2-loaded hepatocytes. J Biol Chem. 1989 Aug 5;264(22):12859–12866. [PubMed] [Google Scholar]
  16. Lechleiter J., Girard S., Peralta E., Clapham D. Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science. 1991 Apr 5;252(5002):123–126. doi: 10.1126/science.2011747. [DOI] [PubMed] [Google Scholar]
  17. Martin S. C., Shuttleworth T. J. Ca2+ influx drives agonist-activated [Ca2+]i oscillations in an exocrine cell. FEBS Lett. 1994 Sep 19;352(1):32–36. doi: 10.1016/0014-5793(94)00913-9. [DOI] [PubMed] [Google Scholar]
  18. Martin S. C., Shuttleworth T. J. Muscarinic-receptor activation stimulates oscillations in K+ and Cl- currents which are acutely dependent on extracellular Ca2+ in avian salt gland cells. Pflugers Arch. 1994 Feb;426(3-4):231–238. doi: 10.1007/BF00374776. [DOI] [PubMed] [Google Scholar]
  19. Meyer T., Stryer L. Calcium spiking. Annu Rev Biophys Biophys Chem. 1991;20:153–174. doi: 10.1146/annurev.bb.20.060191.001101. [DOI] [PubMed] [Google Scholar]
  20. Petersen C. C., Petersen O. H., Berridge M. J. The role of endoplasmic reticulum calcium pumps during cytosolic calcium spiking in pancreatic acinar cells. J Biol Chem. 1993 Oct 25;268(30):22262–22264. [PubMed] [Google Scholar]
  21. Rink T. J., Hallam T. J. Calcium signalling in non-excitable cells: notes on oscillations and store refilling. Cell Calcium. 1989 Jul;10(5):385–395. doi: 10.1016/0143-4160(89)90064-x. [DOI] [PubMed] [Google Scholar]
  22. Rooney T. A., Thomas A. P. Intracellular calcium waves generated by Ins(1,4,5)P3-dependent mechanisms. Cell Calcium. 1993 Nov;14(10):674–690. doi: 10.1016/0143-4160(93)90094-m. [DOI] [PubMed] [Google Scholar]
  23. Shuttleworth T. J. Ca2+ release from inositol trisphosphate-sensitive stores is not modulated by intraluminal [Ca2+]. J Biol Chem. 1992 Feb 25;267(6):3573–3576. [PubMed] [Google Scholar]
  24. Shuttleworth T. J. Temporal relationships between Ca2+ store mobilization and Ca2+ entry in an exocrine cell. Cell Calcium. 1994 Jun;15(6):457–466. doi: 10.1016/0143-4160(94)90110-4. [DOI] [PubMed] [Google Scholar]
  25. Shuttleworth T. J., Thompson J. L. Intracellular [Ca2+] and inositol phosphates in avian nasal gland cells. Am J Physiol. 1989 Nov;257(5 Pt 1):C1020–C1029. doi: 10.1152/ajpcell.1989.257.5.C1020. [DOI] [PubMed] [Google Scholar]
  26. Shuttleworth T. J., Thompson J. L. Modulation of inositol(1,4,5)trisphosphate-sensitive calcium store content during continuous receptor activation and its effects on calcium entry. Cell Calcium. 1992 Oct;13(9):541–551. doi: 10.1016/0143-4160(92)90034-p. [DOI] [PubMed] [Google Scholar]
  27. Thorn P. Ca2+ influx during agonist and Ins(2,4,5)P3-evoked Ca2+ oscillations in HeLa epithelial cells. J Physiol. 1995 Jan 15;482(Pt 2):275–281. doi: 10.1113/jphysiol.1995.sp020516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zhao H., Loessberg P. A., Sachs G., Muallem S. Regulation of intracellular Ca2+ oscillation in AR42J cells. J Biol Chem. 1990 Dec 5;265(34):20856–20862. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES