Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Feb 1;313(Pt 3):821–826. doi: 10.1042/bj3130821

Cloning and sequencing of rat liver carboxylesterase ES-4 (microsomal palmitoyl-CoA hydrolase).

M Robbi 1, E Van Schaftingen 1, H Beaufay 1
PMCID: PMC1216984  PMID: 8611161

Abstract

A cDNA which encodes a carboxylesterase of 561 amino acid residues including a cleavable signal peptide is described. The enzyme expressed in COS cells migrates during PAGE (SDS-, and non-denaturing) as a single prominent band in the region of liver ES-4. It ends in the C-terminal cell-retention signal -HNEL, which, in COS cells overexpressing the enzyme, appears to be slightly less efficient than the signals -HTEL and -HVEL of ES-3 and ES-10 respectively. Glycosylation is not essential for intracellular retention, but leads to a higher activity. As do many carboxylesterases, the enzyme expressed in COS cells hydrolyses omicron-nitrophenyl acetate and alpha-naphthyl acetate. It also hydrolyses acetanilide, although less efficiently than ES-3, and, distinctively, palmitoyl-CoA. In addition to the four canonical Cys residues of the carboxylesterases, it contains a fifth, unpaired Cys336, which apparently is not essential for the catalytic properties. Indeed, treatment with iodoacetamide or substitution of Cys336 by Phe does not markedly alter the activity of the enzyme on the various substrates. The predicted structure of ES-4 is highly homologous to that of two other recently cloned esterases which also end in -HNEL [Yan, Yang, Brady and Parkinson (1994) J. Biol. Chem. 269, 29688-29696; Yan, Yang, and Parkinson (1995) Arch. Biochem. Biophys. 317, 222-234]. Together, these isoenzymes probably account for the closely spaced bands observed in the region of ES-4 in non-denaturing PAGE.

Full Text

The Full Text of this article is available as a PDF (621.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akao T., Omura T. Acetanilide-hydrolyzing esterase of rat liver microsomes. I. Solubilization, purification, and intramicrosomal localization. J Biochem. 1972 Nov;72(5):1245–1256. doi: 10.1093/oxfordjournals.jbchem.a130012. [DOI] [PubMed] [Google Scholar]
  2. Alexson S. E., Mentlein R., Wernstedt C., Hellman U. Isolation and characterization of microsomal acyl-CoA thioesterase. A member of the rat liver microsomal carboxylesterase multi-gene family. Eur J Biochem. 1993 Jun 15;214(3):719–727. doi: 10.1111/j.1432-1033.1993.tb17973.x. [DOI] [PubMed] [Google Scholar]
  3. Bause E. Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J. 1983 Feb 1;209(2):331–336. doi: 10.1042/bj2090331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beaufay H., Amar-Costesec A., Feytmans E., Thinès-Sempoux D., Wibo M., Robbi M., Berthet J. Analytical study of microsomes and isolated subcellular membranes from rat liver. I. Biochemical methods. J Cell Biol. 1974 Apr;61(1):188–200. doi: 10.1083/jcb.61.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berge R. K. Purification and characterization of a long-chain acyl-CoA hydrolase from rat liver microsomes. Biochim Biophys Acta. 1979 Aug 30;574(2):321–333. doi: 10.1016/0005-2760(79)90013-4. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Cygler M., Schrag J. D., Sussman J. L., Harel M., Silman I., Gentry M. K., Doctor B. P. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci. 1993 Mar;2(3):366–382. doi: 10.1002/pro.5560020309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haugejorden S. M., Srinivasan M., Green M. Analysis of the retention signals of two resident luminal endoplasmic reticulum proteins by in vitro mutagenesis. J Biol Chem. 1991 Apr 5;266(10):6015–6018. [PubMed] [Google Scholar]
  9. Hosokawa M., Maki T., Satoh T. Multiplicity and regulation of hepatic microsomal carboxylesterases in rats. Mol Pharmacol. 1987 Jun;31(6):579–584. [PubMed] [Google Scholar]
  10. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  11. Long R. M., Satoh H., Martin B. M., Kimura S., Gonzalez F. J., Pohl L. R. Rat liver carboxylesterase: cDNA cloning, sequencing, and evidence for a multigene family. Biochem Biophys Res Commun. 1988 Oct 31;156(2):866–873. doi: 10.1016/s0006-291x(88)80924-0. [DOI] [PubMed] [Google Scholar]
  12. Medda S., Proia R. L. The carboxylesterase family exhibits C-terminal sequence diversity reflecting the presence or absence of endoplasmic-reticulum-retention sequences. Eur J Biochem. 1992 Jun 15;206(3):801–806. doi: 10.1111/j.1432-1033.1992.tb16987.x. [DOI] [PubMed] [Google Scholar]
  13. Medda S., Takeuchi K., Devore-Carter D., von Deimling O., Heymann E., Swank R. T. An accessory protein identical to mouse egasyn is complexed with rat microsomal beta-glucuronidase and is identical to rat esterase-3. J Biol Chem. 1987 May 25;262(15):7248–7253. [PubMed] [Google Scholar]
  14. Mentlein R., Berge R. K., Heymann E. Identity of purified monoacylglycerol lipase, palmitoyl-CoA hydrolase and aspirin-metabolizing carboxylesterase from rat liver microsomal fractions. A comparative study with enzymes purified in different laboratories. Biochem J. 1985 Dec 1;232(2):479–483. doi: 10.1042/bj2320479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mentlein R., Heiland S., Heymann E. Simultaneous purification and comparative characterization of six serine hydrolases from rat liver microsomes. Arch Biochem Biophys. 1980 Apr 1;200(2):547–559. doi: 10.1016/0003-9861(80)90386-0. [DOI] [PubMed] [Google Scholar]
  16. Mentlein R., Heymann E. Hydrolysis of ester- and amide-type drugs by the purified isoenzymes of nonspecific carboxylesterase from rat liver. Biochem Pharmacol. 1984 Apr 15;33(8):1243–1248. doi: 10.1016/0006-2952(84)90176-x. [DOI] [PubMed] [Google Scholar]
  17. Mentlein R., Ronai A., Robbi M., Heymann E., von Deimling O. Genetic identification of rat liver carboxylesterases isolated in different laboratories. Biochim Biophys Acta. 1987 May 27;913(1):27–38. doi: 10.1016/0167-4838(87)90228-7. [DOI] [PubMed] [Google Scholar]
  18. Mentlein R., Suttorp M., Heymann E. Specificity of purified monoacylglycerol lipase, palmitoyl-CoA hydrolase, palmitoyl-carnitine hydrolase, and nonspecific carboxylesterase from rat liver microsomes. Arch Biochem Biophys. 1984 Jan;228(1):230–246. doi: 10.1016/0003-9861(84)90064-x. [DOI] [PubMed] [Google Scholar]
  19. Morgan E. W., Yan B., Greenway D., Petersen D. R., Parkinson A. Purification and characterization of two rat liver microsomal carboxylesterases (hydrolase A and B). Arch Biochem Biophys. 1994 Dec;315(2):495–512. doi: 10.1006/abbi.1994.1531. [DOI] [PubMed] [Google Scholar]
  20. Robbi M., Beaufay H. Cloning and sequencing of rat liver carboxylesterase ES-3 (egasyn). Biochem Biophys Res Commun. 1994 Sep 30;203(3):1404–1411. doi: 10.1006/bbrc.1994.2341. [DOI] [PubMed] [Google Scholar]
  21. Robbi M., Beaufay H. Immunochemical characterization and biosynthesis of pI-6.4 esterase, a carboxylesterase of rat liver microsomal extracts. Biochem J. 1988 Aug 15;254(1):51–57. doi: 10.1042/bj2540051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robbi M., Beaufay H., Octave J. N. Nucleotide sequence of cDNA coding for rat liver pI 6.1 esterase (ES-10), a carboxylesterase located in the lumen of the endoplasmic reticulum. Biochem J. 1990 Jul 15;269(2):451–458. doi: 10.1042/bj2690451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Robbi M., Beaufay H. Purification and characterization of various esterases from rat liver. Eur J Biochem. 1983 Dec 1;137(1-2):293–301. doi: 10.1111/j.1432-1033.1983.tb07828.x. [DOI] [PubMed] [Google Scholar]
  24. Robbi M., Beaufay H. The COOH terminus of several liver carboxylesterases targets these enzymes to the lumen of the endoplasmic reticulum. J Biol Chem. 1991 Oct 25;266(30):20498–20503. [PubMed] [Google Scholar]
  25. Robbi M., Beaufay H. Topogenesis of carboxylesterases: a rat liver isoenzyme ending in -HTEHT-COOH is a secreted protein. Biochem Biophys Res Commun. 1992 Mar 16;183(2):836–841. doi: 10.1016/0006-291x(92)90559-4. [DOI] [PubMed] [Google Scholar]
  26. Takagi Y., Morohashi K., Kawabata S., Go M., Omura T. Molecular cloning and nucleotide sequence of cDNA of microsomal carboxyesterase E1 of rat liver. J Biochem. 1988 Nov;104(5):801–806. doi: 10.1093/oxfordjournals.jbchem.a122553. [DOI] [PubMed] [Google Scholar]
  27. Takebe Y., Seiki M., Fujisawa J., Hoy P., Yokota K., Arai K., Yoshida M., Arai N. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 1988 Jan;8(1):466–472. doi: 10.1128/mcb.8.1.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tsujita T., Okuda H. Palmitoyl-coenzyme A hydrolyzing activity in rat kidney and its relationship to carboxylesterase. J Lipid Res. 1993 Oct;34(10):1773–1781. [PubMed] [Google Scholar]
  29. Yan B., Yang D., Brady M., Parkinson A. Rat kidney carboxylesterase. Cloning, sequencing, cellular localization, and relationship to rat liver hydrolase. J Biol Chem. 1994 Nov 25;269(47):29688–29696. [PubMed] [Google Scholar]
  30. Yan B., Yang D., Brady M., Parkinson A. Rat testicular carboxylesterase: cloning, cellular localization, and relationship to liver hydrolase A. Arch Biochem Biophys. 1995 Feb 1;316(2):899–908. doi: 10.1006/abbi.1995.1121. [DOI] [PubMed] [Google Scholar]
  31. Yan B., Yang D., Parkinson A. Cloning and expression of hydrolase C, a member of the rat carboxylesterase family. Arch Biochem Biophys. 1995 Feb 20;317(1):222–234. doi: 10.1006/abbi.1995.1157. [DOI] [PubMed] [Google Scholar]
  32. Zhen L., Baumann H., Novak E. K., Swank R. T. The signal for retention of the egasyn-glucuronidase complex within the endoplasmic reticulum. Arch Biochem Biophys. 1993 Aug 1;304(2):402–414. doi: 10.1006/abbi.1993.1368. [DOI] [PubMed] [Google Scholar]
  33. von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES