Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Feb 1;313(Pt 3):827–833. doi: 10.1042/bj3130827

Interaction between tissue inhibitor of metalloproteinases-2 and progelatinase A: immunoreactivity analyses.

N Fujimoto 1, R V Ward 1, T Shinya 1, K Iwata 1, K Yamashita 1, T Hayakawa 1
PMCID: PMC1216985  PMID: 8611162

Abstract

By immunoreactivity analysis using monoclonal antibodies, we showed that the C-terminal domain [R415-631; R is residue] of progelatinase A [pro-matrix metalloproteinase-2 (proMMP-2); EC 3.4.24.24] affected the immunoreactivity of a one-step sandwich enzyme immunoassay (sandwich EIA) for tissue inhibitor of metalloproteinases-2 (TIMP-2) in exactly the same way as does proMMP-2 [Fujimoto, Zhang, Iwata, Shinya, Okada and Hayakawa (1993) Clin. Chim. Acta 220, 31-45], confirming that the C-terminal domain ("tail" portion of TIMP-2 participates in the binding with the C-terminal domain of proMMP-2. We also demonstrated that not only the C-terminal domain but also the N-terminal domain (R1-417) of proMMP-2 bound to TIMP-2 in a 1:1 molar ratio. The binding of each individual domain to TIMP-2, however, was weak enough that either domain could be fully replaced by proMMP-2 through the same binding sites as does proMMP-2, and also that the high-order structure of proMMP-2 allows a more stable binding to TIMP-2. We further confirmed that TIMP-2 complexed with the N-terminal domain of pro-MMP-2 had fully inhibitory activity against the collagenolytic activity of MMP-1. We also demonstrated that either the interstitial collagenase-TIMP-2 complex or the gelatinase B(MMP-9)-TIMP-2 complex was able to form a ternary complex with proMMP-2 in a 1:1 molar ratio, clearly indicating that there are two distinct binding sites, one specific for proMMP-2 complex, but the binding seemed to be less stable than the binding with TIMP-2 alone. Even in the presence of a 10-fold molar excess of the N-terminal domain, ternary complex formation was not observed between the N-terminal domain and the MMP-9--TIMP-2 complex. These clear differences might be ascribed to some significant conformational change(s) evoked in the TIMP-2 molecule, or hindrance of a part of the N-terminal domain binding site of TIMP-2 by complex formation with MMP-9.

Full Text

The Full Text of this article is available as a PDF (483.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apte S. S., Mattei M. G., Olsen B. R. Cloning of the cDNA encoding human tissue inhibitor of metalloproteinases-3 (TIMP-3) and mapping of the TIMP3 gene to chromosome 22. Genomics. 1994 Jan 1;19(1):86–90. doi: 10.1006/geno.1994.1016. [DOI] [PubMed] [Google Scholar]
  2. Bergmann U., Tuuttila A., Stetler-Stevenson W. G., Tryggvason K. Autolytic activation of recombinant human 72 kilodalton type IV collagenase. Biochemistry. 1995 Mar 7;34(9):2819–2825. doi: 10.1021/bi00009a011. [DOI] [PubMed] [Google Scholar]
  3. Birkedal-Hansen H., Moore W. G., Bodden M. K., Windsor L. J., Birkedal-Hansen B., DeCarlo A., Engler J. A. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4(2):197–250. doi: 10.1177/10454411930040020401. [DOI] [PubMed] [Google Scholar]
  4. De Clerck Y. A., Yean T. D., Ratzkin B. J., Lu H. S., Langley K. E. Purification and characterization of two related but distinct metalloproteinase inhibitors secreted by bovine aortic endothelial cells. J Biol Chem. 1989 Oct 15;264(29):17445–17453. [PubMed] [Google Scholar]
  5. Docherty A. J., Murphy G. The tissue metalloproteinase family and the inhibitor TIMP: a study using cDNAs and recombinant proteins. Ann Rheum Dis. 1990 Jun;49 (Suppl 1):469–479. [PubMed] [Google Scholar]
  6. Fridman R., Fuerst T. R., Bird R. E., Hoyhtya M., Oelkuct M., Kraus S., Komarek D., Liotta L. A., Berman M. L., Stetler-Stevenson W. G. Domain structure of human 72-kDa gelatinase/type IV collagenase. Characterization of proteolytic activity and identification of the tissue inhibitor of metalloproteinase-2 (TIMP-2) binding regions. J Biol Chem. 1992 Aug 5;267(22):15398–15405. [PubMed] [Google Scholar]
  7. Fujimoto N., Hosokawa N., Iwata K., Shinya T., Okada Y., Hayakawa T. A one-step sandwich enzyme immunoassay for inactive precursor and complexed forms of human matrix metalloproteinase 9 (92 kDa gelatinase/type IV collagenase, gelatinase B) using monoclonal antibodies. Clin Chim Acta. 1994 Nov;231(1):79–88. doi: 10.1016/0009-8981(94)90256-9. [DOI] [PubMed] [Google Scholar]
  8. Fujimoto N., Mouri N., Iwata K., Ohuchi E., Okada Y., Hayakawa T. A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 2 (72-kDa gelatinase/type IV collagenase) using monoclonal antibodies. Clin Chim Acta. 1993 Nov 30;221(1-2):91–103. doi: 10.1016/0009-8981(93)90024-x. [DOI] [PubMed] [Google Scholar]
  9. Fujimoto N., Zhang J., Iwata K., Shinya T., Okada Y., Hayakawa T. A one-step sandwich enzyme immunoassay for tissue inhibitor of metalloproteinases-2 using monoclonal antibodies. Clin Chim Acta. 1993 Oct 29;220(1):31–45. doi: 10.1016/0009-8981(93)90004-n. [DOI] [PubMed] [Google Scholar]
  10. Goldberg G. I., Marmer B. L., Grant G. A., Eisen A. Z., Wilhelm S., He C. S. Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8207–8211. doi: 10.1073/pnas.86.21.8207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Howard E. W., Banda M. J. Binding of tissue inhibitor of metalloproteinases 2 to two distinct sites on human 72-kDa gelatinase. Identification of a stabilization site. J Biol Chem. 1991 Sep 25;266(27):17972–17977. [PubMed] [Google Scholar]
  12. Ishikawa E., Imagawa M., Hashida S., Yoshitake S., Hamaguchi Y., Ueno T. Enzyme-labeling of antibodies and their fragments for enzyme immunoassay and immunohistochemical staining. J Immunoassay. 1983;4(3):209–327. doi: 10.1080/15321818308057011. [DOI] [PubMed] [Google Scholar]
  13. Kishi J., Ogawa K., Yamamoto S., Hayakawa T. Purification and characterization of a new tissue inhibitor of metalloproteinases (TIMP-2) from mouse colon 26 tumor cells. Matrix. 1991 Feb;11(1):10–16. doi: 10.1016/s0934-8832(11)80222-2. [DOI] [PubMed] [Google Scholar]
  14. Kleiner D. E., Jr, Tuuttila A., Tryggvason K., Stetler-Stevenson W. G. Stability analysis of latent and active 72-kDa type IV collagenase: the role of tissue inhibitor of metalloproteinases-2 (TIMP-2). Biochemistry. 1993 Feb 16;32(6):1583–1592. doi: 10.1021/bi00057a024. [DOI] [PubMed] [Google Scholar]
  15. Kleiner D. E., Jr, Unsworth E. J., Krutzsch H. C., Stetler-Stevenson W. G. Higher-order complex formation between the 72-kilodalton type IV collagenase and tissue inhibitor of metalloproteinases-2. Biochemistry. 1992 Feb 18;31(6):1665–1672. doi: 10.1021/bi00121a013. [DOI] [PubMed] [Google Scholar]
  16. Kodama S., Kishi J., Obata K., Iwata K., Hayakawa T. Monoclonal antibodies to bovine collagenase inhibitor. Coll Relat Res. 1987 Oct;7(5):341–350. doi: 10.1016/s0174-173x(87)80027-4. [DOI] [PubMed] [Google Scholar]
  17. Kolkenbrock H., Orgel D., Hecker-Kia A., Noack W., Ulbrich N. The complex between a tissue inhibitor of metalloproteinases (TIMP-2) and 72-kDa progelatinase is a metalloproteinase inhibitor. Eur J Biochem. 1991 Jun 15;198(3):775–781. doi: 10.1111/j.1432-1033.1991.tb16080.x. [DOI] [PubMed] [Google Scholar]
  18. Murphy G., Willenbrock F., Ward R. V., Cockett M. I., Eaton D., Docherty A. J. The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases. Biochem J. 1992 May 1;283(Pt 3):637–641. doi: 10.1042/bj2830637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Okada Y., Gonoji Y., Naka K., Tomita K., Nakanishi I., Iwata K., Yamashita K., Hayakawa T. Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties. J Biol Chem. 1992 Oct 25;267(30):21712–21719. [PubMed] [Google Scholar]
  20. Pavloff N., Staskus P. W., Kishnani N. S., Hawkes S. P. A new inhibitor of metalloproteinases from chicken: ChIMP-3. A third member of the TIMP family. J Biol Chem. 1992 Aug 25;267(24):17321–17326. [PubMed] [Google Scholar]
  21. Stetler-Stevenson W. G., Krutzsch H. C., Liotta L. A. Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J Biol Chem. 1989 Oct 15;264(29):17374–17378. [PubMed] [Google Scholar]
  22. Stetler-Stevenson W. G., Liotta L. A., Kleiner D. E., Jr Extracellular matrix 6: role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J. 1993 Dec;7(15):1434–1441. doi: 10.1096/fasebj.7.15.8262328. [DOI] [PubMed] [Google Scholar]
  23. Terato K., Nagai Y., Kawanishi K., Yamamoto S. A rapid assay method of collagenase activity using 14C-labeled soluble collagen as substrate. Biochim Biophys Acta. 1976 Oct 11;445(3):753–762. doi: 10.1016/0005-2744(76)90125-x. [DOI] [PubMed] [Google Scholar]
  24. Umenishi F., Umeda M., Miyazaki K. Efficient purification of TIMP-2 from culture medium conditioned by human hepatoma cell line, and its inhibitory effects on metalloproteinases and in vitro tumor invasion. J Biochem. 1991 Aug;110(2):189–195. doi: 10.1093/oxfordjournals.jbchem.a123555. [DOI] [PubMed] [Google Scholar]
  25. Ward R. V., Atkinson S. J., Reynolds J. J., Murphy G. Cell surface-mediated activation of progelatinase A: demonstration of the involvement of the C-terminal domain of progelatinase A in cell surface binding and activation of progelatinase A by primary fibroblasts. Biochem J. 1994 Nov 15;304(Pt 1):263–269. doi: 10.1042/bj3040263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ward R. V., Hembry R. M., Reynolds J. J., Murphy G. The purification of tissue inhibitor of metalloproteinases-2 from its 72 kDa progelatinase complex. Demonstration of the biochemical similarities of tissue inhibitor of metalloproteinases-2 and tissue inhibitor of metalloproteinases-1. Biochem J. 1991 Aug 15;278(Pt 1):179–187. doi: 10.1042/bj2780179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Willenbrock F., Crabbe T., Slocombe P. M., Sutton C. W., Docherty A. J., Cockett M. I., O'Shea M., Brocklehurst K., Phillips I. R., Murphy G. The activity of the tissue inhibitors of metalloproteinases is regulated by C-terminal domain interactions: a kinetic analysis of the inhibition of gelatinase A. Biochemistry. 1993 Apr 27;32(16):4330–4337. doi: 10.1021/bi00067a023. [DOI] [PubMed] [Google Scholar]
  28. Zhang J., Fujimoto N., Iwata K., Sakai T., Okada Y., Hayakawa T. A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 1 (interstitial collagenase) using monoclonal antibodies. Clin Chim Acta. 1993 Oct 15;219(1-2):1–14. doi: 10.1016/0009-8981(93)90192-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES