Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Feb 1;313(Pt 3):835–840. doi: 10.1042/bj3130835

Surfactant-associated protein A is important for maintaining surfactant large-aggregate forms during surface-area cycling.

R A Veldhuizen 1, L J Yao 1, S A Hearn 1, F Possmayer 1, J F Lewis 1
PMCID: PMC1216986  PMID: 8611163

Abstract

Alveolar surfactant can be separated into two major subfractions, the large surfactant aggregates (LAs) and the small surfactant aggregates (SAs). The surface-active LAs are the metabolic precursors of the inactive SAs. This conversion of LAs into SAs can be studied in vitro using a technique called surface-area cycling. We have utilized this technique to examine the effect of trypsin on aggregate conversion. Our results show that trypsin increases the conversion of LAs into SAs in a concentration- and time-dependent manner. Immunoblot analysis revealed that surfactant-associated Protein A (SP-A) was the main target of trypsin. To examine further the role of SP-A in aggregate conversion, we tested the effect of Ca2+ and mannan on this process. The absence of Ca2+ (l mM EDTA) and the presence of mannan both increased the formation of SAs. Electron microscopy revealed that highly organized multilamellar and tubular myelin structures were present in samples that converted slowly to SAs. We concluded that SP-A is important for maintaining LA forms during surface-area cycling by stabilizing tubular myelin and multilamellar structures.

Full Text

The Full Text of this article is available as a PDF (498.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Baritussio A., Bellina L., Carraro R., Rossi A., Enzi G., Magoon M. W., Mussini I. Heterogeneity of alveolar surfactant in the rabbit: composition, morphology, and labelling of subfractions isolated by centrifugation of lung lavage. Eur J Clin Invest. 1984 Feb;14(1):24–29. doi: 10.1111/j.1365-2362.1984.tb00699.x. [DOI] [PubMed] [Google Scholar]
  3. Bruni R., Baritussio A., Quaglino D., Gabelli C., Benevento M., Ronchetti I. P. Postnatal transformations of alveolar surfactant in the rabbit: changes in pool size, pool morphology and isoforms of the 32-38 kDa apolipoprotein. Biochim Biophys Acta. 1988 Feb 4;958(2):255–267. doi: 10.1016/0005-2760(88)90184-1. [DOI] [PubMed] [Google Scholar]
  4. Cockshutt A. M., Absolom D. R., Possmayer F. The role of palmitic acid in pulmonary surfactant: enhancement of surface activity and prevention of inhibition by blood proteins. Biochim Biophys Acta. 1991 Sep 11;1085(2):248–256. doi: 10.1016/0005-2760(91)90101-m. [DOI] [PubMed] [Google Scholar]
  5. Enhorning G. Pulsating bubble technique for evaluating pulmonary surfactant. J Appl Physiol Respir Environ Exerc Physiol. 1977 Aug;43(2):198–203. doi: 10.1152/jappl.1977.43.2.198. [DOI] [PubMed] [Google Scholar]
  6. Gross N. J., Narine K. R. Surfactant subtypes in mice: characterization and quantitation. J Appl Physiol (1985) 1989 Jan;66(1):342–349. doi: 10.1152/jappl.1989.66.1.342. [DOI] [PubMed] [Google Scholar]
  7. Gross N. J., Narine K. R. Surfactant subtypes of mice: metabolic relationships and conversion in vitro. J Appl Physiol (1985) 1989 Jul;67(1):414–421. doi: 10.1152/jappl.1989.67.1.414. [DOI] [PubMed] [Google Scholar]
  8. Gross N. J., Schultz R. M. Requirements for extracellular metabolism of pulmonary surfactant: tentative identification of serine protease. Am J Physiol. 1992 Apr;262(4 Pt 1):L446–L453. doi: 10.1152/ajplung.1992.262.4.L446. [DOI] [PubMed] [Google Scholar]
  9. Gross N. J., Schultz R. M. Serine proteinase requirement for the extra-cellular metabolism of pulmonary surfactant. Biochim Biophys Acta. 1990 May 22;1044(2):222–230. doi: 10.1016/0005-2760(90)90306-i. [DOI] [PubMed] [Google Scholar]
  10. Haagsman H. P., Elfring R. H., van Buel B. L., Voorhout W. F. The lung lectin surfactant protein A aggregates phospholipid vesicles via a novel mechanism. Biochem J. 1991 Apr 1;275(Pt 1):273–276. doi: 10.1042/bj2750273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hall S. B., Hyde R. W., Notter R. H. Changes in subphase aggregates in rabbits injured by free fatty acid. Am J Respir Crit Care Med. 1994 May;149(5):1099–1106. doi: 10.1164/ajrccm.149.5.8173747. [DOI] [PubMed] [Google Scholar]
  12. Higuchi R., Lewis J., Ikegami M. In vitro conversion of surfactant subtypes is altered in alveolar surfactant isolated from injured lungs. Am Rev Respir Dis. 1992 Jun;145(6):1416–1420. doi: 10.1164/ajrccm/145.6.1416. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lewis J. F., Ikegami M., Jobe A. H. Altered surfactant function and metabolism in rabbits with acute lung injury. J Appl Physiol (1985) 1990 Dec;69(6):2303–2310. doi: 10.1152/jappl.1990.69.6.2303. [DOI] [PubMed] [Google Scholar]
  15. Lewis J. F., Veldhuizen R., Possmayer F., Sibbald W., Whitsett J., Qanbar R., McCaig L. Altered alveolar surfactant is an early marker of acute lung injury in septic adult sheep. Am J Respir Crit Care Med. 1994 Jul;150(1):123–130. doi: 10.1164/ajrccm.150.1.8025737. [DOI] [PubMed] [Google Scholar]
  16. Magoon M. W., Wright J. R., Baritussio A., Williams M. C., Goerke J., Benson B. J., Hamilton R. L., Clements J. A. Subfractionation of lung surfactant. Implications for metabolism and surface activity. Biochim Biophys Acta. 1983 Jan 7;750(1):18–31. doi: 10.1016/0005-2760(83)90200-x. [DOI] [PubMed] [Google Scholar]
  17. Nicholas T. E., Power J. H., Barr H. A. Effect of pattern of breathing on subfractions of surfactant in tissue and alveolar compartments of the adult rat lung. Am J Respir Cell Mol Biol. 1990 Sep;3(3):251–258. doi: 10.1165/ajrcmb/3.3.251. [DOI] [PubMed] [Google Scholar]
  18. Putz G., Goerke J., Clements J. A. Surface activity of rabbit pulmonary surfactant subfractions at different concentrations in a captive bubble. J Appl Physiol (1985) 1994 Aug;77(2):597–605. doi: 10.1152/jappl.1994.77.2.597. [DOI] [PubMed] [Google Scholar]
  19. Schürch S., Possmayer F., Cheng S., Cockshutt A. M. Pulmonary SP-A enhances adsorption and appears to induce surface sorting of lipid extract surfactant. Am J Physiol. 1992 Aug;263(2 Pt 1):L210–L218. doi: 10.1152/ajplung.1992.263.2.L210. [DOI] [PubMed] [Google Scholar]
  20. Spain C. L., Silbajoris R., Young S. L. Alterations of surfactant pools in fetal and newborn rat lungs. Pediatr Res. 1987 Jan;21(1):5–9. doi: 10.1203/00006450-198701000-00002. [DOI] [PubMed] [Google Scholar]
  21. Stevens P. A., Wright J. R., Clements J. A. Changes in quantity, composition, and surface activity of alveolar surfactant at birth. J Appl Physiol (1985) 1987 Sep;63(3):1049–1057. doi: 10.1152/jappl.1987.63.3.1049. [DOI] [PubMed] [Google Scholar]
  22. Suzuki Y., Fujita Y., Kogishi K. Reconstitution of tubular myelin from synthetic lipids and proteins associated with pig pulmonary surfactant. Am Rev Respir Dis. 1989 Jul;140(1):75–81. doi: 10.1164/ajrccm/140.1.75. [DOI] [PubMed] [Google Scholar]
  23. Ueda T., Ikegami M., Jobe A. Surfactant subtypes. In vitro conversion, in vivo function, and effects of serum proteins. Am J Respir Crit Care Med. 1994 May;149(5):1254–1259. doi: 10.1164/ajrccm.149.5.8173767. [DOI] [PubMed] [Google Scholar]
  24. Veldhuizen R. A., Hearn S. A., Lewis J. F., Possmayer F. Surface-area cycling of different surfactant preparations: SP-A and SP-B are essential for large-aggregate integrity. Biochem J. 1994 Jun 1;300(Pt 2):519–524. doi: 10.1042/bj3000519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Veldhuizen R. A., Inchley K., Hearn S. A., Lewis J. F., Possmayer F. Degradation of surfactant-associated protein B (SP-B) during in vitro conversion of large to small surfactant aggregates. Biochem J. 1993 Oct 1;295(Pt 1):141–147. doi: 10.1042/bj2950141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Veldhuizen R. A., Lee J., Sandler D., Hull W., Whitsett J. A., Lewis J., Possmayer F., Novick R. J. Alterations in pulmonary surfactant composition and activity after experimental lung transplantation. Am Rev Respir Dis. 1993 Jul;148(1):208–215. doi: 10.1164/ajrccm/148.1.208. [DOI] [PubMed] [Google Scholar]
  27. Voorhout W. F., Veenendaal T., Haagsman H. P., Verkleij A. J., van Golde L. M., Geuze H. J. Surfactant protein A is localized at the corners of the pulmonary tubular myelin lattice. J Histochem Cytochem. 1991 Oct;39(10):1331–1336. doi: 10.1177/39.10.1940306. [DOI] [PubMed] [Google Scholar]
  28. Williams M. C., Hawgood S., Hamilton R. L. Changes in lipid structure produced by surfactant proteins SP-A, SP-B, and SP-C. Am J Respir Cell Mol Biol. 1991 Jul;5(1):41–50. doi: 10.1165/ajrcmb/5.1.41. [DOI] [PubMed] [Google Scholar]
  29. Yamada T., Ikegami M., Jobe A. H. Effects of surfactant subfractions on preterm rabbit lung function. Pediatr Res. 1990 Jun;27(6):592–598. doi: 10.1203/00006450-199006000-00011. [DOI] [PubMed] [Google Scholar]
  30. Yu S., Harding P. G., Smith N., Possmayer F. Bovine pulmonary surfactant: chemical composition and physical properties. Lipids. 1983 Aug;18(8):522–529. doi: 10.1007/BF02535391. [DOI] [PubMed] [Google Scholar]
  31. van Iwaarden F., Welmers B., Verhoef J., Haagsman H. P., van Golde L. M. Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar macrophages. Am J Respir Cell Mol Biol. 1990 Jan;2(1):91–98. doi: 10.1165/ajrcmb/2.1.91. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES