Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Feb 1;313(Pt 3):855–861. doi: 10.1042/bj3130855

Kinetics and thermodynamics of the binding of riboflavin, riboflavin 5'-phosphate and riboflavin 3',5'-bisphosphate by apoflavodoxins.

J J Pueyo 1, G P Curley 1, S G Mayhew 1
PMCID: PMC1216989  PMID: 8611166

Abstract

The reactions of excess apoflavodoxin from Desulfovibrio vulgaris, Anabaena variabilis and Azotobacter vinelandii with riboflavin 5'-phosphate (FMN), riboflavin 3',5'-bisphosphate and riboflavin are pseudo-first-order. The rates increase with decreasing pH in the range pH 5-8, and, in general, they increase with increasing ionic strength to approach a maximum at an ionic strength greater than 0.4 M. The rate of FMN binding in phosphate at high pH increases to a maximum at an ionic strength of about 0.1 M, and then decreases as the phosphate concentration is increased further. The dissociation constants for the complexes with FMN and riboflavin decrease with an increase of ionic strength. Inorganic phosphate stabilizes the complex with riboflavin. The effects of phosphate on riboflavin binding suggest that phosphate interacts with the apoprotein at the site normally occupied by the phosphate of FMN. Redox potentials determined for the oxidized/semiquinone and semiquinone/hydroquinone couples of the riboflavin and FMN complexes were used with K delta values for the complexes with the oxidized flavins to calculate values for K delta for the semiquinone and hydroquinone complexes. The hydroquinone complexes are all less stable than the complexes with the two other redox forms of the flavin. Destabilization of the hydroquinone is less marked in the complexes with riboflavin, supporting a proposal that the terminal phosphate group of FMN plays a role in decreasing the redox potential of the semiquinone/hydroquinone couple.

Full Text

The Full Text of this article is available as a PDF (452.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. F. Energetics of the one-electron reduction steps of riboflavin, FMN and FAD to their fully reduced forms. Biochim Biophys Acta. 1983 Jan 13;722(1):158–162. doi: 10.1016/0005-2728(83)90169-x. [DOI] [PubMed] [Google Scholar]
  2. Barman B. G., Tollin G. Flavine-protein interactions in flavoenzymes. Temperature-jump and stopped-flow studies of flavine analog binding to the apoprotein of Azotobacter flavodoxin. Biochemistry. 1972 Dec 5;11(25):4746–4754. doi: 10.1021/bi00775a018. [DOI] [PubMed] [Google Scholar]
  3. Barman B. G., Tollin G. Flavine-protein interactions in flavoenzymes. Thermodynamics and kinetics of reduction of Azotobacter flavodoxin. Biochemistry. 1972 Dec 5;11(25):4755–4759. doi: 10.1021/bi00775a019. [DOI] [PubMed] [Google Scholar]
  4. Curley G. P., Carr M. C., Mayhew S. G., Voordouw G. Redox and flavin-binding properties of recombinant flavodoxin from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem. 1991 Dec 18;202(3):1091–1100. doi: 10.1111/j.1432-1033.1991.tb16475.x. [DOI] [PubMed] [Google Scholar]
  5. Draper R. D., Ingraham L. L. A potentiometric study of the flavin semiquinone equilibrium. Arch Biochem Biophys. 1968 Jun;125(3):802–808. doi: 10.1016/0003-9861(68)90517-1. [DOI] [PubMed] [Google Scholar]
  6. Dubourdieu M., MacKnight M. L., Tollin G. Temperature-jump studies of Desulfovibrio vulgaris flavodoxin: kinetics of FMN binding and of reduction of semiquinone by methyl viologen. Biochem Biophys Res Commun. 1974 Sep 23;60(2):649–655. doi: 10.1016/0006-291x(74)90290-3. [DOI] [PubMed] [Google Scholar]
  7. Edmondson D. E., Tollin G. Chemical and physical characterization of the Shethna flavoprotein and apoprotein and kinetics and thermodynamics of flavin analog binding to the apoprotein. Biochemistry. 1971 Jan 5;10(1):124–132. doi: 10.1021/bi00777a019. [DOI] [PubMed] [Google Scholar]
  8. Fillat M. F., Edmondson D. E., Gomez-Moreno C. Structural and chemical properties of a flavodoxin from Anabaena PCC 7119. Biochim Biophys Acta. 1990 Sep 3;1040(2):301–307. doi: 10.1016/0167-4838(90)90091-s. [DOI] [PubMed] [Google Scholar]
  9. Gast R., Valk B. E., Müller F., Mayhew S. G., Veeger C. Studies on the binding of FMN by apoflavodoxin from Peptostreptococcus elsdenii, pH and NaCl concentration dependence. Biochim Biophys Acta. 1976 Oct 28;446(2):463–471. doi: 10.1016/0005-2795(76)90012-x. [DOI] [PubMed] [Google Scholar]
  10. Hinkson J. W. Azotobacter free-radical flavoprotein. Preparation and properties of the apoprotein. Biochemistry. 1968 Jul;7(7):2666–2672. doi: 10.1021/bi00847a033. [DOI] [PubMed] [Google Scholar]
  11. Klugkist J., Haaker H., Wassink H., Veeger C. The catalytic activity of nitrogenase in intact Azotobacter vinelandii cells. Eur J Biochem. 1985 Feb 1;146(3):509–515. doi: 10.1111/j.1432-1033.1985.tb08681.x. [DOI] [PubMed] [Google Scholar]
  12. Klugkist J., Voorberg J., Haaker H., Veeger C. Characterization of three different flavodoxins from Azotobacter vinelandii. Eur J Biochem. 1986 Feb 17;155(1):33–40. doi: 10.1111/j.1432-1033.1986.tb09455.x. [DOI] [PubMed] [Google Scholar]
  13. Knauf M. A., Löhr F., Curley G. P., O'Farrell P., Mayhew S. G., Müller F., Rüterjans H. Homonuclear and heteronuclear NMR studies of oxidized Desulfovibrio vulgaris flavodoxin. Sequential assignments and identification of secondary structure elements. Eur J Biochem. 1993 Apr 1;213(1):167–184. doi: 10.1111/j.1432-1033.1993.tb17746.x. [DOI] [PubMed] [Google Scholar]
  14. Ludwig M. L., Schopfer L. M., Metzger A. L., Pattridge K. A., Massey V. Structure and oxidation-reduction behavior of 1-deaza-FMN flavodoxins: modulation of redox potentials in flavodoxins. Biochemistry. 1990 Nov 13;29(45):10364–10375. doi: 10.1021/bi00497a011. [DOI] [PubMed] [Google Scholar]
  15. MacKnight M. L., Gillard J. M., Tollin G. Flavine-protein interactions in flavoenzymes. pH dependence of the binding of flavine mononucleotide and riboflavine to Azotobacter flavodoxin. Biochemistry. 1973 Oct 9;12(21):4200–4206. doi: 10.1021/bi00745a025. [DOI] [PubMed] [Google Scholar]
  16. Mayhew S. G. Studies on flavin binding in flavodoxins. Biochim Biophys Acta. 1971 May 12;235(2):289–302. doi: 10.1016/0005-2744(71)90207-5. [DOI] [PubMed] [Google Scholar]
  17. Müller F., Massey V. Flavin-sulfite complexes and their structures. J Biol Chem. 1969 Aug 10;244(15):4007–4016. [PubMed] [Google Scholar]
  18. Nielsen P., Rauschenbach P., Bacher A. Phosphates of riboflavin and riboflavin analogs: a reinvestigation by high-performance liquid chromatography. Anal Biochem. 1983 Apr 15;130(2):359–368. doi: 10.1016/0003-2697(83)90600-0. [DOI] [PubMed] [Google Scholar]
  19. Pueyo J. J., Gomez-Moreno C., Mayhew S. G. Oxidation-reduction potentials of ferredoxin-NADP+ reductase and flavodoxin from Anabaena PCC 7119 and their electrostatic and covalent complexes. Eur J Biochem. 1991 Dec 18;202(3):1065–1071. doi: 10.1111/j.1432-1033.1991.tb16471.x. [DOI] [PubMed] [Google Scholar]
  20. Pueyo J. J., Gómez-Moreno C. Purification of ferredoxin-NADP+ reductase, flavodoxin and ferredoxin from a single batch of the cyanobacterium Anabaena PCC 7119. Prep Biochem. 1991;21(4):191–204. doi: 10.1080/10826069108018571. [DOI] [PubMed] [Google Scholar]
  21. Pueyo J. J., Mayhew S. G., Voordouw G. Effects of phosphate on the binding of FMN and riboflavin by apoflavodoxin from Desulfovibrio vulgaris (Hildenborough). Biochem Soc Trans. 1992 Feb;20(1):83S–83S. doi: 10.1042/bst020083s. [DOI] [PubMed] [Google Scholar]
  22. Simondsen R. P., Tollin G. Structure-function relations in flavodoxins. Mol Cell Biochem. 1980 Dec 10;33(1-2):13–24. doi: 10.1007/BF00224568. [DOI] [PubMed] [Google Scholar]
  23. Stankovich M. T. An anaerobic spectroelectrochemical cell for studying the spectral and redox properties of flavoproteins. Anal Biochem. 1980 Dec;109(2):295–308. doi: 10.1016/0003-2697(80)90652-1. [DOI] [PubMed] [Google Scholar]
  24. Vervoort J., van Berkel W. J., Mayhew S. G., Müller F., Bacher A., Nielsen P., LeGall J. Properties of the complexes of riboflavin 3',5'-bisphosphate and the apoflavodoxins from Megasphaera elsdenii and Desulfovibrio vulgaris. Eur J Biochem. 1986 Dec 15;161(3):749–756. doi: 10.1111/j.1432-1033.1986.tb10503.x. [DOI] [PubMed] [Google Scholar]
  25. WHITBY L. G. A new method for preparing flavin-adenine dinucleotide. Biochem J. 1953 Jun;54(3):437–442. doi: 10.1042/bj0540437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wassink J. H., Mayhew S. G. Fluorescence titration with apoflavodoxin: a sensitive assay for riboflavin 5'-phosphate and flavin adenine dinucleotide in mixtures. Anal Biochem. 1975 Oct;68(2):609–616. doi: 10.1016/0003-2697(75)90656-9. [DOI] [PubMed] [Google Scholar]
  27. Zhou Z., Swenson R. P. Electrostatic effects of surface acidic amino acid residues on the oxidation-reduction potentials of the flavodoxin from Desulfovibrio vulgaris (Hildenborough). Biochemistry. 1995 Mar 14;34(10):3183–3192. doi: 10.1021/bi00010a007. [DOI] [PubMed] [Google Scholar]
  28. van Mierlo C. P., Lijnzaad P., Vervoort J., Müller F., Berendsen H. J., de Vlieg J. Tertiary structure of two-electron reduced Megasphaera elsdenii flavodoxin and some implications, as determined by two-dimensional 1H-NMR and restrained molecular dynamics. Eur J Biochem. 1990 Nov 26;194(1):185–198. doi: 10.1111/j.1432-1033.1990.tb19444.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES