Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Feb 1;313(Pt 3):921–926. doi: 10.1042/bj3130921

Effect of channelling on the concentration of bulk-phase intermediates as cytosolic proteins become more concentrated.

B N Kholodenko 1, H V Westerhoff 1, M Cascante 1
PMCID: PMC1216999  PMID: 8611176

Abstract

This paper shows that metabolic channelling can provide a mechanism for decreasing the concentration of metabolites in the cytoplasm when cytosolic proteins become more concentrated. A dynamic complex catalysing the direct transfer of an intermediate is compared with the analogous pathway lacking a channel (an "ideal" pathway). In an ideal pathway a proportional increase in protein content does not result in a change in the steady-state concentration of the bulk-phase intermediate, whereas in a channelling pathway the bulk-phase intermediate either decreases or increases depending on the elemental rate constants within the enzyme mechanisms. When the concentration of the enzymes are equal, the pool size decreases with increasing protein concentration if the elemental step depleting the bulk-phase intermediate exerts more control on its concentration than the step supplying the intermediate. Results are illustrated numerically, and a simplified dynamic channel is analysed in which the concentration of the enzyme-enzyme forms. For such a "hit-and-run" channel it is shown that, when the product-releasing step of the enzyme located upstream is close to equilibrium, the pool size decreases as the concentrations of the enzymes increase in proportion, regardless of the rate, equilibrium constants and concentration ratios of the two sequential enzymes.

Full Text

The Full Text of this article is available as a PDF (522.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albe K. R., Butler M. H., Wright B. E. Cellular concentrations of enzymes and their substrates. J Theor Biol. 1990 Mar 22;143(2):163–195. doi: 10.1016/s0022-5193(05)80266-8. [DOI] [PubMed] [Google Scholar]
  2. CORI C. F., VELICK S. F., CORI G. T. The combination of diphosphopyridine nucleotide with glyceraldehyde phosphate dehydrogenase. Biochim Biophys Acta. 1950 Jan;4(1-3):160–169. doi: 10.1016/0006-3002(50)90020-5. [DOI] [PubMed] [Google Scholar]
  3. Cornish-Bowden A., Cárdenas M. L. Channelling can affect concentrations of metabolic intermediates at constant net flux: artefact or reality? Eur J Biochem. 1993 Apr 1;213(1):87–92. doi: 10.1111/j.1432-1033.1993.tb17737.x. [DOI] [PubMed] [Google Scholar]
  4. Cornish-Bowden A. Failure of channelling to maintain low concentrations of metabolic intermediates. Eur J Biochem. 1991 Jan 1;195(1):103–108. doi: 10.1111/j.1432-1033.1991.tb15681.x. [DOI] [PubMed] [Google Scholar]
  5. Easterby J. S. The analysis of metabolite channelling in multienzyme complexes and multifunctional proteins. Biochem J. 1989 Dec 1;264(2):605–607. doi: 10.1042/bj2640605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fell D. A. Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J. 1992 Sep 1;286(Pt 2):313–330. doi: 10.1042/bj2860313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fell D. A., Sauro H. M. Metabolic control analysis. The effects of high enzyme concentrations. Eur J Biochem. 1990 Aug 28;192(1):183–187. doi: 10.1111/j.1432-1033.1990.tb19212.x. [DOI] [PubMed] [Google Scholar]
  8. Fell D. A., Sauro H. M. Metabolic control and its analysis. Additional relationships between elasticities and control coefficients. Eur J Biochem. 1985 May 2;148(3):555–561. doi: 10.1111/j.1432-1033.1985.tb08876.x. [DOI] [PubMed] [Google Scholar]
  9. Fell D. A., Sauro H. M. Metabolic control and its analysis. Additional relationships between elasticities and control coefficients. Eur J Biochem. 1985 May 2;148(3):555–561. doi: 10.1111/j.1432-1033.1985.tb08876.x. [DOI] [PubMed] [Google Scholar]
  10. Friedrich P. Dynamic compartmentation in soluble enzyme systems. Acta Biochim Biophys Acad Sci Hung. 1974;9(3):159–173. [PubMed] [Google Scholar]
  11. Garner M. M., Burg M. B. Macromolecular crowding and confinement in cells exposed to hypertonicity. Am J Physiol. 1994 Apr;266(4 Pt 1):C877–C892. doi: 10.1152/ajpcell.1994.266.4.C877. [DOI] [PubMed] [Google Scholar]
  12. Heinrich R., Rapoport T. A. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem. 1974 Feb 15;42(1):89–95. doi: 10.1111/j.1432-1033.1974.tb03318.x. [DOI] [PubMed] [Google Scholar]
  13. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  14. Kholodenko B. N., Cascante M., Westerhoff H. V. Control theory of metabolic channelling. Mol Cell Biochem. 1994 Apr-May;133-134:313–331. doi: 10.1007/BF01267963. [DOI] [PubMed] [Google Scholar]
  15. Kholodenko B. N., Cascante M., Westerhoff H. V. Control theory of metabolic channelling. Mol Cell Biochem. 1994 Apr-May;133-134:313–331. doi: 10.1007/BF01267963. [DOI] [PubMed] [Google Scholar]
  16. Kholodenko B. N., Cascante M., Westerhoff H. V. Dramatic changes in control properties that accompany channelling and metabolite sequestration. FEBS Lett. 1993 Dec 28;336(3):381–384. doi: 10.1016/0014-5793(93)80841-h. [DOI] [PubMed] [Google Scholar]
  17. Kholodenko B. N., Cascante M., Westerhoff H. V. Dramatic changes in control properties that accompany channelling and metabolite sequestration. FEBS Lett. 1993 Dec 28;336(3):381–384. doi: 10.1016/0014-5793(93)80841-h. [DOI] [PubMed] [Google Scholar]
  18. Kholodenko B. N., Demin O. V., Westerhoff H. V. 'Channelled' pathways can be more sensitive to specific regulatory signals. FEBS Lett. 1993 Mar 29;320(1):75–78. doi: 10.1016/0014-5793(93)81661-i. [DOI] [PubMed] [Google Scholar]
  19. Kholodenko B. N., Lyubarev A. E., Kurganov B. I. Control of the metabolic flux in a system with high enzyme concentrations and moiety-conserved cycles. The sum of the flux control coefficients can drop significantly below unity. Eur J Biochem. 1992 Nov 15;210(1):147–153. doi: 10.1111/j.1432-1033.1992.tb17402.x. [DOI] [PubMed] [Google Scholar]
  20. Kholodenko B. N., Sauro H. M., Westerhoff H. V. Control by enzymes, coenzymes and conserved moieties. A generalisation of the connectivity theorem of metabolic control analysis. Eur J Biochem. 1994 Oct 1;225(1):179–186. doi: 10.1111/j.1432-1033.1994.00179.x. [DOI] [PubMed] [Google Scholar]
  21. Kholodenko B. N., Westerhoff H. V. Control theory of one enzyme. Biochim Biophys Acta. 1994 Oct 19;1208(2):294–305. doi: 10.1016/0167-4838(94)90116-3. [DOI] [PubMed] [Google Scholar]
  22. Kholodenko B. N., Westerhoff H. V. Metabolic channelling and control of the flux. FEBS Lett. 1993 Mar 29;320(1):71–74. doi: 10.1016/0014-5793(93)81660-r. [DOI] [PubMed] [Google Scholar]
  23. Kholodenko B. N., Westerhoff H. V. Metabolic channelling and control of the flux. FEBS Lett. 1993 Mar 29;320(1):71–74. doi: 10.1016/0014-5793(93)81660-r. [DOI] [PubMed] [Google Scholar]
  24. Kholodenko B. N., Westerhoff H. V. The macroworld versus the microworld of biochemical regulation and control. Trends Biochem Sci. 1995 Feb;20(2):52–54. doi: 10.1016/s0968-0004(00)88955-0. [DOI] [PubMed] [Google Scholar]
  25. Mendes P., Kell D. B., Westerhoff H. V. Channelling can decrease pool size. Eur J Biochem. 1992 Feb 15;204(1):257–266. doi: 10.1111/j.1432-1033.1992.tb16632.x. [DOI] [PubMed] [Google Scholar]
  26. Minton A. P. The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol Cell Biochem. 1983;55(2):119–140. doi: 10.1007/BF00673707. [DOI] [PubMed] [Google Scholar]
  27. Sauro H. M. Moiety-conserved cycles and metabolic control analysis: problems in sequestration and metabolic channelling. Biosystems. 1994;33(1):55–67. doi: 10.1016/0303-2647(94)90061-2. [DOI] [PubMed] [Google Scholar]
  28. Srere P. A. Complexes of sequential metabolic enzymes. Annu Rev Biochem. 1987;56:89–124. doi: 10.1146/annurev.bi.56.070187.000513. [DOI] [PubMed] [Google Scholar]
  29. Srivastava D. K., Bernhard S. A. Direct transfer of reduced nicotinamide adenine dinucleotide from glyceraldehyde-3-phosphate dehydrogenase to liver alcohol dehydrogenase. Biochemistry. 1984 Sep 25;23(20):4538–4545. doi: 10.1021/bi00315a006. [DOI] [PubMed] [Google Scholar]
  30. Ushiroyama T., Fukushima T., Styre J. D., Spivey H. O. Substrate channeling of NADH in mitochondrial redox processes. Curr Top Cell Regul. 1992;33:291–307. doi: 10.1016/b978-0-12-152833-1.50022-8. [DOI] [PubMed] [Google Scholar]
  31. Zimmerman S. B., Minton A. P. Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu Rev Biophys Biomol Struct. 1993;22:27–65. doi: 10.1146/annurev.bb.22.060193.000331. [DOI] [PubMed] [Google Scholar]
  32. van Dam K., van der Vlag J., Kholodenko B. N., Westerhoff H. V. The sum of the control coefficients of all enzymes on the flux through a group-transfer pathway can be as high as two. Eur J Biochem. 1993 Mar 15;212(3):791–799. doi: 10.1111/j.1432-1033.1993.tb17720.x. [DOI] [PubMed] [Google Scholar]
  33. van Dam K., van der Vlag J., Kholodenko B. N., Westerhoff H. V. The sum of the control coefficients of all enzymes on the flux through a group-transfer pathway can be as high as two. Eur J Biochem. 1993 Mar 15;212(3):791–799. doi: 10.1111/j.1432-1033.1993.tb17720.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES