Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Feb 1;313(Pt 3):927–932. doi: 10.1042/bj3130927

Expression and secretion of recombinant ovine beta-lactoglobulin in Saccharomyces cerevisiae and Kluyveromyces lactis.

T L Rocha 1, G Paterson 1, K Crimmins 1, A Boyd 1, L Sawyer 1, L A Fothergill-Gilmore 1
PMCID: PMC1217000  PMID: 8611177

Abstract

High expression and secretion of recombinant ovine beta-lactoglobulin has been achieved in the yeast Kluyveromyces lactis. The yield of beta-lactoglobulin is 40-50 mg per litre of culture supernatant and accounts for approx. 72% of the total secreted protein. Constitutive expression is under the control of the Saccharomyces cerevisiae phosphoglycerate kinase promoter from an intronless version of the beta-lactoglobulin gene. Secretion is specified by the ovine protein's own signal sequence. this system, coupled to an efficient and novel recovery protocol, allows 30 mg of pure protein to be isolated from a typical 1 litre culture. The protein is virtually indistinguishable from beta-lactoglobulin conventionally purified from sheep milk by its behaviour in native PAGE and SDS/PAGE, reactivity to antibodies, CD, fluorescence spectroscopy and N-terminal sequencing. Attempts to achieve a similar expression and secretion system in the yeast S. cerevisiae met with only limited success, although it was found that heat-shock treatment modestly increased the yield up to approx. 3-4 mg per litre of culture supernatant. Site-directed mutagenesis showed that secretion in S. cerevisiae depended upon correct formation of the two disulphide bonds present in beta-lactoglobulin.

Full Text

The Full Text of this article is available as a PDF (430.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batt C. A., Rabson L. D., Wong D. W., Kinsella J. E. Expression of recombinant bovine beta-lactoglobulin in Escherichia coli. Agric Biol Chem. 1990 Apr;54(4):949–955. [PubMed] [Google Scholar]
  2. Creamer L. K. Effect of sodium dodecyl sulfate and palmitic acid on the equilibrium unfolding of bovine beta-lactoglobulin. Biochemistry. 1995 May 30;34(21):7170–7176. doi: 10.1021/bi00021a031. [DOI] [PubMed] [Google Scholar]
  3. Fleer R., Chen X. J., Amellal N., Yeh P., Fournier A., Guinet F., Gault N., Faucher D., Folliard F., Fukuhara H. High-level secretion of correctly processed recombinant human interleukin-1 beta in Kluyveromyces lactis. Gene. 1991 Nov 15;107(2):285–295. doi: 10.1016/0378-1119(91)90329-a. [DOI] [PubMed] [Google Scholar]
  4. Fleer R., Yeh P., Amellal N., Maury I., Fournier A., Bacchetta F., Baduel P., Jung G., L'Hôte H., Becquart J. Stable multicopy vectors for high-level secretion of recombinant human serum albumin by Kluyveromyces yeasts. Biotechnology (N Y) 1991 Oct;9(10):968–975. doi: 10.1038/nbt1091-968. [DOI] [PubMed] [Google Scholar]
  5. Gaye P., Hue-Delahaie D., Mercier J. C., Soulier S., Vilotte J. L., Furet J. P. Ovine beta-lactoglobulin messenger RNA: nucleotide sequence and mRNA levels during functional differentiation of the mammary gland. Biochimie. 1986 Sep;68(9):1097–1107. doi: 10.1016/s0300-9084(86)80184-5. [DOI] [PubMed] [Google Scholar]
  6. Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hayes J. D., Kerr L. A., Cronshaw A. D. Evidence that glutathione S-transferases B1B1 and B2B2 are the products of separate genes and that their expression in human liver is subject to inter-individual variation. Molecular relationships between the B1 and B2 subunits and other Alpha class glutathione S-transferases. Biochem J. 1989 Dec 1;264(2):437–445. doi: 10.1042/bj2640437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Katakura Y., Totsuka M., Ametani A., Kaminogawa S. Tryptophan-19 of beta-lactoglobulin, the only residue completely conserved in the lipocalin superfamily, is not essential for binding retinol, but relevant to stabilizing bound retinol and maintaining its structure. Biochim Biophys Acta. 1994 Jul 20;1207(1):58–67. doi: 10.1016/0167-4838(94)90051-5. [DOI] [PubMed] [Google Scholar]
  9. Kingsman S. M., Cousens D., Stanway C. A., Chambers A., Wilson M., Kingsman A. J. High-efficiency yeast expression vectors based on the promoter of the phosphoglycerate kinase gene. Methods Enzymol. 1990;185:329–341. doi: 10.1016/0076-6879(90)85029-n. [DOI] [PubMed] [Google Scholar]
  10. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Lyster R. L. Reviews of the progress of dairy science. Section C. Chemistry of milk proteins. J Dairy Res. 1972 Jun;39(2):279–318. doi: 10.1017/s0022029900014114. [DOI] [PubMed] [Google Scholar]
  13. McKenzie H. A. Milk proteins. Adv Protein Chem. 1967;22:55–234. doi: 10.1016/s0065-3233(08)60041-8. [DOI] [PubMed] [Google Scholar]
  14. McKenzie H. A., Ralston G. B., Shaw D. C. Location of sulfhydryl and disulfide groups in bovine -lactoglobulins and effects of urea. Biochemistry. 1972 Nov 21;11(24):4539–4547. doi: 10.1021/bi00774a017. [DOI] [PubMed] [Google Scholar]
  15. Mellor J., Dobson M. J., Roberts N. A., Tuite M. F., Emtage J. S., White S., Lowe P. A., Patel T., Kingsman A. J., Kingsman S. M. Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene. 1983 Sep;24(1):1–14. doi: 10.1016/0378-1119(83)90126-9. [DOI] [PubMed] [Google Scholar]
  16. North A. C. Structural homology in ligand-specific transport proteins. Biochem Soc Symp. 1990;57:35–48. [PubMed] [Google Scholar]
  17. Papiz M. Z., Sawyer L., Eliopoulos E. E., North A. C., Findlay J. B., Sivaprasadarao R., Jones T. A., Newcomer M. E., Kraulis P. J. The structure of beta-lactoglobulin and its similarity to plasma retinol-binding protein. 1986 Nov 27-Dec 3Nature. 324(6095):383–385. doi: 10.1038/324383a0. [DOI] [PubMed] [Google Scholar]
  18. Piper P. W., Curran B., Davies M. W., Hirst K., Lockheart A., Ogden J. E., Stanway C. A., Kingsman A. J., Kingsman S. M. A heat shock element in the phosphoglycerate kinase gene promoter of yeast. Nucleic Acids Res. 1988 Feb 25;16(4):1333–1348. doi: 10.1093/nar/16.4.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pérez M. D., Calvo M. Interaction of beta-lactoglobulin with retinol and fatty acids and its role as a possible biological function for this protein: a review. J Dairy Sci. 1995 May;78(5):978–988. doi: 10.3168/jds.S0022-0302(95)76713-3. [DOI] [PubMed] [Google Scholar]
  20. Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
  21. Swinkels B. W., van Ooyen A. J., Bonekamp F. J. The yeast Kluyveromyces lactis as an efficient host for heterologous gene expression. Antonie Van Leeuwenhoek. 1993;64(2):187–201. doi: 10.1007/BF00873027. [DOI] [PubMed] [Google Scholar]
  22. Taylor J. W., Ott J., Eckstein F. The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res. 1985 Dec 20;13(24):8765–8785. doi: 10.1093/nar/13.24.8765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Totsuka M., Katakura Y., Shimizu M., Kumagai I., Miura K., Kaminogawa S. Expression and secretion of bovine beta-lactoglobulin in Saccharomyces cerevisiae. Agric Biol Chem. 1990 Dec;54(12):3111–3116. [PubMed] [Google Scholar]
  24. Weissman J. S., Kim P. S. Reexamination of the folding of BPTI: predominance of native intermediates. Science. 1991 Sep 20;253(5026):1386–1393. doi: 10.1126/science.1716783. [DOI] [PubMed] [Google Scholar]
  25. van den Berg J. A., van der Laken K. J., van Ooyen A. J., Renniers T. C., Rietveld K., Schaap A., Brake A. J., Bishop R. J., Schultz K., Moyer D. Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Biotechnology (N Y) 1990 Feb;8(2):135–139. doi: 10.1038/nbt0290-135. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES