Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Feb 1;313(Pt 3):951–956. doi: 10.1042/bj3130951

Investigation of the substrate specificity of cruzipain, the major cysteine proteinase of Trypanosoma cruzi, through the use of cystatin-derived substrates and inhibitors.

C Serveau 1, G Lalmanach 1, M A Juliano 1, J Scharfstein 1, L Juliano 1, F Gauthier 1
PMCID: PMC1217003  PMID: 8611180

Abstract

A panel of intramolecularly quenched fluorogenic substrates containing the conserved QVVA and LVG inhibitory sequences of cystatin inhibitors was used to describe the specificity of the major cysteine proteinase of Trypanosoma cruzi (cruzipain or cruzain). This approach was based on the observations that: (1) cruzipain is strongly inhibited by chicken cystatin and rat T-kininogen, two representative members of cystatin families 2 and 3; (2) the QVVA- and LVG-containing substrates are specifically hydrolysed by papain-like proteinases; and (3) the cystatin-like motifs are similar to the proteolytically sensitive sequences in cruzipain that separate the pro-region and/or the C-terminal extension from the catalytic domain. Specificity constants (kcat/Km) were determined and compared with those of mammalian cathepsins B and L from rat liver lysosomes. Cruzipain and the mammalian proteinases cleaved cystatin-derived substrates at the same site, but their specificities differed significantly. Increased specificity for cruzipain was obtained by replacing amino acids at critical positions on both sides of the cleavage sites, especially at position P2'. The specificity constants (k(cat)/Km) obtained for the two substrates with a prolyl residue at P2' (O-aminobenzoyl-QVVAGP-ethylenediamine 2-4-dinitrophenyl and O-aminobenzoyl-VVGGP-ethylenediamine 2-4-dinitrophenyl) were about 50 times higher for cruzipain than for rat cathepsin L and about 100 times higher than for cathepsin B. Diazomethylketone derivatives, based on the non-prime sequence of cystatin-derived substrates, inhibited cruzipain irreversibly, but their inactivation rate constants were considerably lower than those for mammalian cathepsins B and L, confirming the importance of P' residues for cruzipain specificity.

Full Text

The Full Text of this article is available as a PDF (350.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anastasi A., Brown M. A., Kembhavi A. A., Nicklin M. J., Sayers C. A., Sunter D. C., Barrett A. J. Cystatin, a protein inhibitor of cysteine proteinases. Improved purification from egg white, characterization, and detection in chicken serum. Biochem J. 1983 Apr 1;211(1):129–138. doi: 10.1042/bj2110129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arai S., Watanabe H., Kondo H., Emori Y., Abe K. Papain-inhibitory activity of oryzacystatin, a rice seed cysteine proteinase inhibitor, depends on the central Gln-Val-Val-Ala-Gly region conserved among cystatin superfamily members. J Biochem. 1991 Feb;109(2):294–298. [PubMed] [Google Scholar]
  3. Aslund L., Henriksson J., Campetella O., Frasch A. C., Pettersson U., Cazzulo J. J. The C-terminal extension of the major cysteine proteinase (cruzipain) from Trypanosoma cruzi. Mol Biochem Parasitol. 1991 Apr;45(2):345–347. doi: 10.1016/0166-6851(91)90103-d. [DOI] [PubMed] [Google Scholar]
  4. Auerswald E. A., Genenger G., Assfalg-Machleidt I., Machleidt W., Engh R. A., Fritz H. Recombinant chicken egg white cystatin variants of the QLVSG region. Eur J Biochem. 1992 Nov 1;209(3):837–845. doi: 10.1111/j.1432-1033.1992.tb17355.x. [DOI] [PubMed] [Google Scholar]
  5. Barrett A. J., Kembhavi A. A., Brown M. A., Kirschke H., Knight C. G., Tamai M., Hanada K. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J. 1982 Jan 1;201(1):189–198. doi: 10.1042/bj2010189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barrett A. J., Kirschke H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. 1981;80(Pt 100):535–561. doi: 10.1016/s0076-6879(81)80043-2. [DOI] [PubMed] [Google Scholar]
  7. Berti P. J., Storer A. C. Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol. 1995 Feb 17;246(2):273–283. doi: 10.1006/jmbi.1994.0083. [DOI] [PubMed] [Google Scholar]
  8. Björk I., Pol E., Raub-Segall E., Abrahamson M., Rowan A. D., Mort J. S. Differential changes in the association and dissociation rate constants for binding of cystatins to target proteinases occurring on N-terminal truncation of the inhibitors indicate that the interaction mechanism varies with different enzymes. Biochem J. 1994 Apr 1;299(Pt 1):219–225. doi: 10.1042/bj2990219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bode W., Engh R., Musil D., Thiele U., Huber R., Karshikov A., Brzin J., Kos J., Turk V. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J. 1988 Aug;7(8):2593–2599. doi: 10.1002/j.1460-2075.1988.tb03109.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bonaldo M. C., d'Escoffier L. N., Salles J. M., Goldenberg S. Characterization and expression of proteases during Trypanosoma cruzi metacyclogenesis. Exp Parasitol. 1991 Jul;73(1):44–51. doi: 10.1016/0014-4894(91)90006-i. [DOI] [PubMed] [Google Scholar]
  11. Campetella O., Henriksson J., Aslund L., Frasch A. C., Pettersson U., Cazzulo J. J. The major cysteine proteinase (cruzipain) from Trypanosoma cruzi is encoded by multiple polymorphic tandemly organized genes located on different chromosomes. Mol Biochem Parasitol. 1992 Feb;50(2):225–234. doi: 10.1016/0166-6851(92)90219-a. [DOI] [PubMed] [Google Scholar]
  12. Campetella O., Martínez J., Cazzulo J. J. A major cysteine proteinase is developmentally regulated in Trypanosoma cruzi. FEMS Microbiol Lett. 1990 Jan 15;55(1-2):145–149. doi: 10.1016/0378-1097(90)90184-r. [DOI] [PubMed] [Google Scholar]
  13. Cazzulo J. J., Couso R., Raimondi A., Wernstedt C., Hellman U. Further characterization and partial amino acid sequence of a cysteine proteinase from Trypanosoma cruzi. Mol Biochem Parasitol. 1989 Feb;33(1):33–41. doi: 10.1016/0166-6851(89)90039-x. [DOI] [PubMed] [Google Scholar]
  14. Chagas J. R., Juliano L., Prado E. S. Intramolecularly quenched fluorogenic tetrapeptide substrates for tissue and plasma kallikreins. Anal Biochem. 1991 Feb 1;192(2):419–425. doi: 10.1016/0003-2697(91)90558-b. [DOI] [PubMed] [Google Scholar]
  15. Eakin A. E., Mills A. A., Harth G., McKerrow J. H., Craik C. S. The sequence, organization, and expression of the major cysteine protease (cruzain) from Trypanosoma cruzi. J Biol Chem. 1992 Apr 15;267(11):7411–7420. [PubMed] [Google Scholar]
  16. Elmoujahed A., Gutman N., Brillard M., Gauthier F. Substrate specificity of two kallikrein family gene products isolated from the rat submaxillary gland. FEBS Lett. 1990 Jun 4;265(1-2):137–140. doi: 10.1016/0014-5793(90)80903-v. [DOI] [PubMed] [Google Scholar]
  17. Gauthier F., Moreau T., Lalmanach G., Brillard-Bourdet M., Ferrer-Di Martino M., Juliano L. A new, sensitive fluorogenic substrate for papain based on the sequence of the cystatin inhibitory site. Arch Biochem Biophys. 1993 Nov 1;306(2):304–308. doi: 10.1006/abbi.1993.1516. [DOI] [PubMed] [Google Scholar]
  18. Green G. D., Shaw E. Peptidyl diazomethyl ketones are specific inactivators of thiol proteinases. J Biol Chem. 1981 Feb 25;256(4):1923–1928. [PubMed] [Google Scholar]
  19. Hall A., Abrahamson M., Grubb A., Trojnar J., Kania P., Kasprzykowska R., Kasprzykowski F. Cystatin C based peptidyl diazomethanes as cysteine proteinase inhibitors: influence of the peptidyl chain length. J Enzyme Inhib. 1992;6(2):113–123. doi: 10.3109/14756369209040742. [DOI] [PubMed] [Google Scholar]
  20. Harnois-Pontoni M., Monsigny M., Mayer R. Hydrosoluble fluorogenic substrates for plasmin. Anal Biochem. 1991 Mar 2;193(2):248–255. doi: 10.1016/0003-2697(91)90017-n. [DOI] [PubMed] [Google Scholar]
  21. Harth G., Andrews N., Mills A. A., Engel J. C., Smith R., McKerrow J. H. Peptide-fluoromethyl ketones arrest intracellular replication and intercellular transmission of Trypanosoma cruzi. Mol Biochem Parasitol. 1993 Mar;58(1):17–24. doi: 10.1016/0166-6851(93)90086-d. [DOI] [PubMed] [Google Scholar]
  22. Hellman U., Wernstedt C., Cazzulo J. J. Self-proteolysis of the cysteine proteinase, cruzipain, from Trypanosoma cruzi gives a major fragment corresponding to its carboxy-terminal domain. Mol Biochem Parasitol. 1991 Jan;44(1):15–21. doi: 10.1016/0166-6851(91)90216-s. [DOI] [PubMed] [Google Scholar]
  23. Henderson P. J. A linear equation that describes the steady-state kinetics of enzymes and subcellular particles interacting with tightly bound inhibitors. Biochem J. 1972 Apr;127(2):321–333. doi: 10.1042/bj1270321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Karrer K. M., Peiffer S. L., DiTomas M. E. Two distinct gene subfamilies within the family of cysteine protease genes. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3063–3067. doi: 10.1073/pnas.90.7.3063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Khouri H. E., Plouffe C., Hasnain S., Hirama T., Storer A. C., Ménard R. A model to explain the pH-dependent specificity of cathepsin B-catalysed hydrolyses. Biochem J. 1991 May 1;275(Pt 3):751–757. doi: 10.1042/bj2750751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Khouri H. E., Vernet T., Ménard R., Parlati F., Laflamme P., Tessier D. C., Gour-Salin B., Thomas D. Y., Storer A. C. Engineering of papain: selective alteration of substrate specificity by site-directed mutagenesis. Biochemistry. 1991 Sep 17;30(37):8929–8936. doi: 10.1021/bi00101a003. [DOI] [PubMed] [Google Scholar]
  27. Lalmanach G., Hoebeke J., Moreau T., Brillard-Bourdet M., Ferrer-Ditt Martino M., Borras-Cuesta F., Gauthier F. Interaction between cystatin-derived peptides and papain. J Protein Chem. 1993 Feb;12(1):23–31. doi: 10.1007/BF01024910. [DOI] [PubMed] [Google Scholar]
  28. Lalmanach G., Serveau C., Brillard-Bourdet M., Chagas J. R., Mayer R., Juliano L., Gauthier F. Conserved cystatin segments as models for designing specific substrates and inhibitors of cysteine proteinases. J Protein Chem. 1995 Nov;14(8):645–653. doi: 10.1007/BF01886903. [DOI] [PubMed] [Google Scholar]
  29. Lima A. P., Scharfstein J., Storer A. C., Ménard R. Temperature-dependent substrate inhibition of the cysteine proteinase (GP57/51) from Trypanosoma cruzi. Mol Biochem Parasitol. 1992 Dec;56(2):335–338. doi: 10.1016/0166-6851(92)90183-k. [DOI] [PubMed] [Google Scholar]
  30. Lima A. P., Tessier D. C., Thomas D. Y., Scharfstein J., Storer A. C., Vernet T. Identification of new cysteine protease gene isoforms in Trypanosoma cruzi. Mol Biochem Parasitol. 1994 Oct;67(2):333–338. doi: 10.1016/0166-6851(94)00144-8. [DOI] [PubMed] [Google Scholar]
  31. Machleidt W., Thiele U., Laber B., Assfalg-Machleidt I., Esterl A., Wiegand G., Kos J., Turk V., Bode W. Mechanism of inhibition of papain by chicken egg white cystatin. Inhibition constants of N-terminally truncated forms and cyanogen bromide fragments of the inhibitor. FEBS Lett. 1989 Jan 30;243(2):234–238. doi: 10.1016/0014-5793(89)80135-8. [DOI] [PubMed] [Google Scholar]
  32. Mayer R., Picard I., Lawton P., Grellier P., Barrault C., Monsigny M., Schrével J. Peptide derivatives specific for a Plasmodium falciparum proteinase inhibit the human erythrocyte invasion by merozoites. J Med Chem. 1991 Oct;34(10):3029–3035. doi: 10.1021/jm00114a011. [DOI] [PubMed] [Google Scholar]
  33. McGrath M. E., Eakin A. E., Engel J. C., McKerrow J. H., Craik C. S., Fletterick R. J. The crystal structure of cruzain: a therapeutic target for Chagas' disease. J Mol Biol. 1995 Mar 24;247(2):251–259. doi: 10.1006/jmbi.1994.0137. [DOI] [PubMed] [Google Scholar]
  34. McKerrow J. H., Sun E., Rosenthal P. J., Bouvier J. The proteases and pathogenicity of parasitic protozoa. Annu Rev Microbiol. 1993;47:821–853. doi: 10.1146/annurev.mi.47.100193.004133. [DOI] [PubMed] [Google Scholar]
  35. Meirelles M. N., Juliano L., Carmona E., Silva S. G., Costa E. M., Murta A. C., Scharfstein J. Inhibitors of the major cysteinyl proteinase (GP57/51) impair host cell invasion and arrest the intracellular development of Trypanosoma cruzi in vitro. Mol Biochem Parasitol. 1992 Jun;52(2):175–184. doi: 10.1016/0166-6851(92)90050-t. [DOI] [PubMed] [Google Scholar]
  36. Moreau T., Esnard F., Gutman N., Degand P., Gauthier F. Cysteine-proteinase-inhibiting function of T kininogen and of its proteolytic fragments. Eur J Biochem. 1988 Apr 5;173(1):185–190. doi: 10.1111/j.1432-1033.1988.tb13983.x. [DOI] [PubMed] [Google Scholar]
  37. Mottram J. C., North M. J., Barry J. D., Coombs G. H. A cysteine proteinase cDNA from Trypanosoma brucei predicts an enzyme with an unusual C-terminal extension. FEBS Lett. 1989 Dec 4;258(2):211–215. doi: 10.1016/0014-5793(89)81655-2. [DOI] [PubMed] [Google Scholar]
  38. Murta A. C., Persechini P. M., Padron T. de S., de Souza W., Guimarães J. A., Scharfstein J. Structural and functional identification of GP57/51 antigen of Trypanosoma cruzi as a cysteine proteinase. Mol Biochem Parasitol. 1990 Nov;43(1):27–38. doi: 10.1016/0166-6851(90)90127-8. [DOI] [PubMed] [Google Scholar]
  39. Ménard R., Carmona E., Plouffe C., Brömme D., Konishi Y., Lefebvre J., Storer A. C. The specificity of the S1' subsite of cysteine proteases. FEBS Lett. 1993 Aug 9;328(1-2):107–110. doi: 10.1016/0014-5793(93)80975-z. [DOI] [PubMed] [Google Scholar]
  40. North M. J., Mottram J. C., Coombs G. H. Cysteine proteinases of parasitic protozoa. Parasitol Today. 1990 Aug;6(8):270–275. doi: 10.1016/0169-4758(90)90189-b. [DOI] [PubMed] [Google Scholar]
  41. Oliveira M. C., Hirata I. Y., Chagas J. R., Boschcov P., Gomes R. A., Figueiredo A. F., Juliano L. Intramolecularly quenched fluorogenic peptide substrates for human renin. Anal Biochem. 1992 May 15;203(1):39–46. doi: 10.1016/0003-2697(92)90040-e. [DOI] [PubMed] [Google Scholar]
  42. Rosenthal P. J., Lee G. K., Smith R. E. Inhibition of a Plasmodium vinckei cysteine proteinase cures murine malaria. J Clin Invest. 1993 Mar;91(3):1052–1056. doi: 10.1172/JCI116262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schaffer M. A., Fischer R. L. Analysis of mRNAs that Accumulate in Response to Low Temperature Identifies a Thiol Protease Gene in Tomato. Plant Physiol. 1988 Jun;87(2):431–436. doi: 10.1104/pp.87.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Scharfstein J., Schechter M., Senna M., Peralta J. M., Mendonça-Previato L., Miles M. A. Trypanosoma cruzi: characterization and isolation of a 57/51,000 m.w. surface glycoprotein (GP57/51) expressed by epimastigotes and bloodstream trypomastigotes. J Immunol. 1986 Aug 15;137(4):1336–1341. [PubMed] [Google Scholar]
  45. Souto-Padrón T., Campetella O. E., Cazzulo J. J., de Souza W. Cysteine proteinase in Trypanosoma cruzi: immunocytochemical localization and involvement in parasite-host cell interaction. J Cell Sci. 1990 Jul;96(Pt 3):485–490. doi: 10.1242/jcs.96.3.485. [DOI] [PubMed] [Google Scholar]
  46. Stubbs M. T., Laber B., Bode W., Huber R., Jerala R., Lenarcic B., Turk V. The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J. 1990 Jun;9(6):1939–1947. doi: 10.1002/j.1460-2075.1990.tb08321.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tian W. X., Tsou C. L. Determination of the rate constant of enzyme modification by measuring the substrate reaction in the presence of the modifier. Biochemistry. 1982 Mar 2;21(5):1028–1032. doi: 10.1021/bi00534a031. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES