Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Feb 1;313(Pt 3):963–971. doi: 10.1042/bj3130963

Structural studies on a lipoarabinogalactan of Crithidia fasciculata.

P Schneider 1, A Treumann 1, K G Milne 1, M J McConville 1, N Zitzmann 1, M A Ferguson 1
PMCID: PMC1217005  PMID: 8611182

Abstract

The monosaccharide D-arabinopyranose has only been found in glycoconjugates of the trypanasomatid parasites Leishmania major, Endotrypanum schaudinni and Crithidia fasciculata. The donor molecule for the relevant arabinosyltransferases is known to be GDP-alpha-D-Arap in L. major and C. fasciculata, and the latter organism is being used to study the biosynthesis of GDP-alpha-D-Arap. In this study, we describe the structure of the terminal product of arabinose metabolism in C. fasciculata, namely lipoarabinogalactan. This molecule was purified by hydrophobic-interaction chromatography and studied by a variety of techniques, including gas chromatography-mass spectrometry, electrospray mass spectrometry and chemical and enzymic digestions. These data show that lipoarabinogalactan contains a previously described D-arabino-D-galactan polysaccharide component covalently attached to a glycosylphosphatidylinositol type of membrane anchor that is similar to, but not identical with, that found in the lipophosphoglycans of the Leishmania.

Full Text

The Full Text of this article is available as a PDF (631.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Etges R., Bouvier J., Bordier C. The major surface protein of Leishmania promastigotes is anchored in the membrane by a myristic acid-labeled phospholipid. EMBO J. 1986 Mar;5(3):597–601. doi: 10.1002/j.1460-2075.1986.tb04252.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gorin P. A., Previato J. O., Mendonça-Previato L., Travassos L. R. Structure of the D-mannan and D-arabino-D-galactan in Crithidia fasciculata: changes in proportion with age of culture. J Protozool. 1979 Aug;26(3):473–478. doi: 10.1111/j.1550-7408.1979.tb04656.x. [DOI] [PubMed] [Google Scholar]
  3. McConville M. J., Collidge T. A., Ferguson M. A., Schneider P. The glycoinositol phospholipids of Leishmania mexicana promastigotes. Evidence for the presence of three distinct pathways of glycolipid biosynthesis. J Biol Chem. 1993 Jul 25;268(21):15595–15604. [PubMed] [Google Scholar]
  4. McConville M. J., Ferguson M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993 Sep 1;294(Pt 2):305–324. doi: 10.1042/bj2940305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. McConville M. J., Homans S. W., Thomas-Oates J. E., Dell A., Bacic A. Structures of the glycoinositolphospholipids from Leishmania major. A family of novel galactofuranose-containing glycolipids. J Biol Chem. 1990 May 5;265(13):7385–7394. [PubMed] [Google Scholar]
  6. McConville M. J., Thomas-Oates J. E., Ferguson M. A., Homans S. W. Structure of the lipophosphoglycan from Leishmania major. J Biol Chem. 1990 Nov 15;265(32):19611–19623. [PubMed] [Google Scholar]
  7. McConville M. J., Turco S. J., Ferguson M. A., Sacks D. L. Developmental modification of lipophosphoglycan during the differentiation of Leishmania major promastigotes to an infectious stage. EMBO J. 1992 Oct;11(10):3593–3600. doi: 10.1002/j.1460-2075.1992.tb05443.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pimenta P. F., Turco S. J., McConville M. J., Lawyer P. G., Perkins P. V., Sacks D. L. Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science. 1992 Jun 26;256(5065):1812–1815. doi: 10.1126/science.1615326. [DOI] [PubMed] [Google Scholar]
  9. Previato J. O., Mendonça-Previato L., Lewanczuk R. Z., Travassos L. R., Gorin P. A. Crithidia spp.: structural comparison of polysaccharides for taxonomic significance. Exp Parasitol. 1982 Apr;53(2):170–178. doi: 10.1016/0014-4894(82)90058-3. [DOI] [PubMed] [Google Scholar]
  10. Rao P., Pattabiraman T. N. Reevaluation of the phenol-sulfuric acid reaction for the estimation of hexoses and pentoses. Anal Biochem. 1989 Aug 15;181(1):18–22. doi: 10.1016/0003-2697(89)90387-4. [DOI] [PubMed] [Google Scholar]
  11. Routier F. H., da Silveira E. X., Wait R., Jones C., Previato J. O., Mendonça-Previato L. Chemical characterisation of glycosylinositolphospholipids of Herpetomonas samuelpessoai. Mol Biochem Parasitol. 1995 Jan;69(1):81–92. doi: 10.1016/0166-6851(94)00202-x. [DOI] [PubMed] [Google Scholar]
  12. Schaefer F. W., 3rd, Bell E. J., Etges F. J. Leishmania tropica: chemostatic cultivation. Exp Parasitol. 1970 Dec;28(3):465–472. doi: 10.1016/0014-4894(70)90114-1. [DOI] [PubMed] [Google Scholar]
  13. Schneider P., Ferguson M. A., McConville M. J., Mehlert A., Homans S. W., Bordier C. Structure of the glycosyl-phosphatidylinositol membrane anchor of the Leishmania major promastigote surface protease. J Biol Chem. 1990 Oct 5;265(28):16955–16964. [PubMed] [Google Scholar]
  14. Schneider P., Ferguson M. A. Microscale analysis of glycosylphosphatidylinositol structures. Methods Enzymol. 1995;250:614–630. doi: 10.1016/0076-6879(95)50100-2. [DOI] [PubMed] [Google Scholar]
  15. Schneider P., McConville M. J., Ferguson M. A. Characterization of GDP-alpha-D-arabinopyranose, the precursor of D-Arap in Leishmania major lipophosphoglycan. J Biol Chem. 1994 Jul 15;269(28):18332–18337. [PubMed] [Google Scholar]
  16. Schneider P., Nikolaev A., Ferguson M. A. The biosynthesis of GDP-D-arabinopyranose in Crithidia fasciculata: characterization of a D-arabino-1-kinase activity and its use in the synthesis of GDP-[5-3H]D-arabinopyranose. Biochem J. 1995 Oct 1;311(Pt 1):307–315. doi: 10.1042/bj3110307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schneider P., Ralton J. E., McConville M. J., Ferguson M. A. Analysis of the neutral glycan fractions of glycosyl-phosphatidylinositols by thin-layer chromatography. Anal Biochem. 1993 Apr;210(1):106–112. doi: 10.1006/abio.1993.1158. [DOI] [PubMed] [Google Scholar]
  18. Schneider P., Rosat J. P., Ransijn A., Ferguson M. A., McConville M. J. Characterization of glycoinositol phospholipids in the amastigote stage of the protozoan parasite Leishmania major. Biochem J. 1993 Oct 15;295(Pt 2):555–564. doi: 10.1042/bj2950555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sherman W. R., Ackermann K. E., Bateman R. H., Green B. N., Lewis I. Mass-analysed ion kinetic energy spectra and B1E-B2 triple sector mass spectrometric analysis of phosphoinositides by fast atom bombardment. Biomed Mass Spectrom. 1985 Aug;12(8):409–413. doi: 10.1002/bms.1200120810. [DOI] [PubMed] [Google Scholar]
  20. Turco S. J., Orlandi P. A., Jr, Homans S. W., Ferguson M. A., Dwek R. A., Rademacher T. W. Structure of the phosphosaccharide-inositol core of the Leishmania donovani lipophosphoglycan. J Biol Chem. 1989 Apr 25;264(12):6711–6715. [PubMed] [Google Scholar]
  21. de Lederkremer R. M., Casal O. L., Alves M. J., Colli W. Evidence for the presence of D-galactofuranose in the lipopeptidophosphoglycan from Trypanosome cruzi. Modification and tritium labeling. FEBS Lett. 1980 Jul 11;116(1):25–29. doi: 10.1016/0014-5793(80)80521-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES