Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Feb 15;314(Pt 1):305–312. doi: 10.1042/bj3140305

Signalling mechanisms of endothelin-induced mitogenesis and melanogenesis in human melanocytes.

G Imokawa 1, Y Yada 1, M Kimura 1
PMCID: PMC1217041  PMID: 8660299

Abstract

To understand the signalling mechanisms involved in the dual stimulatory effects of endothelin-1 (ET-1) on DNA synthesis and melanization in cultured human melanocytes, we analysed the biological profile of ET-1 receptor and determined the effects of ET-1 on the protein kinase C, cyclic AMP system and mitogen-activated protein kinase (MAP kinase) in comparison with their relevant stimulants. The photoaffinity labelling of ET-1 receptors with Denny-Jaff reagents revealed an ET-1 receptor with a molecular mass of 51 kDa in human melanocytes. The ET(A) receptor subtype-sensitive antagonist BQ123(50 nM) or pertussis toxin (100 ng/ml) significantly suppressed the ET-1-induced intracellular calcium mobilization, indicating the presence of pertussis toxin-sensitive G-protein-coupled ET(A) receptors. An assay of protein kinase C activity revealed that 10nM ET-1 translocated cytosolic protein kinase C to membrane-bound protein kinase C within 5 min of the start of incubation. In contrast, receptor-mediated melanocyte activation by ET-1 was accompanied by an elevated level of cyclic AMP (4-fold over control) after 10-60 min of incubation, whereas 60 min of incubation of human melanocytes with c-Kit or c-Met ligands such as stem cell factor (10 nM) or basic fibroblast growth factor (10 nM) did not elevate the cyclic AMP level. We have also demonstrated that a specific tyrosine kinase inhibitor, tyrphostin B-42 (10 microM), inhibited the ET-1-induced growth stimulation, suggesting the involvement of the tyrosine kinase pathway in growth stimulation. Consistently, an assay of MAP kinase revealed that ET-1 caused a 10-fold activation of MAP kinase after 5 min of incubation with human melanocytes in a similar way to tyrosine kinase ligands such as stem cell factor and hepatocyte growth factor. Further, the DNA synthesis stimulated by the c-Kit ligand stem cell factor at a concentration of 1 nM was synergistically enhanced by 5 nM ET-1. These results suggest that ET-induced dual cellular events in human melanocytes are closely associated with cross-talk between the protein kinase C and A and tyrosine kinase pathways.

Full Text

The Full Text of this article is available as a PDF (447.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Malek Z., Swope V. B., Suzuki I., Akcali C., Harriger M. D., Boyce S. T., Urabe K., Hearing V. J. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1789–1793. doi: 10.1073/pnas.92.5.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arai H., Hori S., Aramori I., Ohkubo H., Nakanishi S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature. 1990 Dec 20;348(6303):730–732. doi: 10.1038/348730a0. [DOI] [PubMed] [Google Scholar]
  3. Bogoyevitch M. A., Glennon P. E., Andersson M. B., Clerk A., Lazou A., Marshall C. J., Parker P. J., Sugden P. H. Endothelin-1 and fibroblast growth factors stimulate the mitogen-activated protein kinase signaling cascade in cardiac myocytes. The potential role of the cascade in the integration of two signaling pathways leading to myocyte hypertrophy. J Biol Chem. 1994 Jan 14;269(2):1110–1119. [PubMed] [Google Scholar]
  4. Bushfield M., Murphy G. J., Lavan B. E., Parker P. J., Hruby V. J., Milligan G., Houslay M. D. Hormonal regulation of Gi2 alpha-subunit phosphorylation in intact hepatocytes. Biochem J. 1990 Jun 1;268(2):449–457. doi: 10.1042/bj2680449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carroll M. P., May W. S. Protein kinase C-mediated serine phosphorylation directly activates Raf-1 in murine hematopoietic cells. J Biol Chem. 1994 Jan 14;269(2):1249–1256. [PubMed] [Google Scholar]
  6. Farishian R. A., Whittaker J. R. Phenylalanine lowers melanin synthesis in mammalian melanocytes by reducing tyrosine uptake: implications for pigment reduction in phenylketonuria. J Invest Dermatol. 1980 Feb;74(2):85–89. doi: 10.1111/1523-1747.ep12519975. [DOI] [PubMed] [Google Scholar]
  7. Friedmann P. S., Gilchrest B. A. Ultraviolet radiation directly induces pigment production by cultured human melanocytes. J Cell Physiol. 1987 Oct;133(1):88–94. doi: 10.1002/jcp.1041330111. [DOI] [PubMed] [Google Scholar]
  8. Frödin M., Peraldi P., Van Obberghen E. Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells. J Biol Chem. 1994 Feb 25;269(8):6207–6214. [PubMed] [Google Scholar]
  9. Fuller B. B., Lunsford J. B., Iman D. S. Alpha-melanocyte-stimulating hormone regulation of tyrosinase in Cloudman S-91 mouse melanoma cell cultures. J Biol Chem. 1987 Mar 25;262(9):4024–4033. [PubMed] [Google Scholar]
  10. Gordon P. R., Gilchrest B. A. Human melanogenesis is stimulated by diacylglycerol. J Invest Dermatol. 1989 Nov;93(5):700–702. doi: 10.1111/1523-1747.ep12319900. [DOI] [PubMed] [Google Scholar]
  11. Graves L. M., Bornfeldt K. E., Raines E. W., Potts B. C., Macdonald S. G., Ross R., Krebs E. G. Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10300–10304. doi: 10.1073/pnas.90.21.10300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gusovsky F., Gutkind J. S. Selective effects of activation of protein kinase C isozymes on cyclic AMP accumulation. Mol Pharmacol. 1991 Feb;39(2):124–129. [PubMed] [Google Scholar]
  13. Halaban R., Langdon R., Birchall N., Cuono C., Baird A., Scott G., Moellmann G., McGuire J. Basic fibroblast growth factor from human keratinocytes is a natural mitogen for melanocytes. J Cell Biol. 1988 Oct;107(4):1611–1619. doi: 10.1083/jcb.107.4.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Halaban R., Pomerantz S. H., Marshall S., Lambert D. T., Lerner A. B. Regulation of tyrosinase in human melanocytes grown in culture. J Cell Biol. 1983 Aug;97(2):480–488. doi: 10.1083/jcb.97.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hearing V. J., Tsukamoto K. Enzymatic control of pigmentation in mammals. FASEB J. 1991 Nov;5(14):2902–2909. [PubMed] [Google Scholar]
  16. Houslay M. D. 'Crosstalk': a pivotal role for protein kinase C in modulating relationships between signal transduction pathways. Eur J Biochem. 1991 Jan 1;195(1):9–27. doi: 10.1111/j.1432-1033.1991.tb15671.x. [DOI] [PubMed] [Google Scholar]
  17. Imokawa G., Miyagishi M., Yada Y. Endothelin-1 as a new melanogen: coordinated expression of its gene and the tyrosinase gene in UVB-exposed human epidermis. J Invest Dermatol. 1995 Jul;105(1):32–37. doi: 10.1111/1523-1747.ep12312500. [DOI] [PubMed] [Google Scholar]
  18. Imokawa G., Motegi I. Skin organ culture model for examining epidermal melanization. J Invest Dermatol. 1993 Jan;100(1):47–54. doi: 10.1111/1523-1747.ep12354117. [DOI] [PubMed] [Google Scholar]
  19. Imokawa G., Yada Y., Miyagishi M. Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. J Biol Chem. 1992 Dec 5;267(34):24675–24680. [PubMed] [Google Scholar]
  20. Jiménez M., Kameyama K., Maloy W. L., Tomita Y., Hearing V. J. Mammalian tyrosinase: biosynthesis, processing, and modulation by melanocyte-stimulating hormone. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3830–3834. doi: 10.1073/pnas.85.11.3830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Katada T., Gilman A. G., Watanabe Y., Bauer S., Jakobs K. H. Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem. 1985 Sep 2;151(2):431–437. doi: 10.1111/j.1432-1033.1985.tb09120.x. [DOI] [PubMed] [Google Scholar]
  22. Kolch W., Heidecker G., Kochs G., Hummel R., Vahidi H., Mischak H., Finkenzeller G., Marmé D., Rapp U. R. Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature. 1993 Jul 15;364(6434):249–252. doi: 10.1038/364249a0. [DOI] [PubMed] [Google Scholar]
  23. Kozuka M., Ito T., Hirose S., Lodhi K. M., Hagiwara H. Purification and characterization of bovine lung endothelin receptor. J Biol Chem. 1991 Sep 5;266(25):16892–16896. [PubMed] [Google Scholar]
  24. Lin H. Y., Kaji E. H., Winkel G. K., Ives H. E., Lodish H. F. Cloning and functional expression of a vascular smooth muscle endothelin 1 receptor. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3185–3189. doi: 10.1073/pnas.88.8.3185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Matsumoto K., Tajima H., Nakamura T. Hepatocyte growth factor is a potent stimulator of human melanocyte DNA synthesis and growth. Biochem Biophys Res Commun. 1991 Apr 15;176(1):45–51. doi: 10.1016/0006-291x(91)90887-d. [DOI] [PubMed] [Google Scholar]
  26. Naghshineh S., Noguchi M., Huang K. P., Londos C. Activation of adipocyte adenylate cyclase by protein kinase C. J Biol Chem. 1986 Nov 5;261(31):14534–14538. [PubMed] [Google Scholar]
  27. Oikawa A., Nakayasu M., Nohara M., Tchen T. T. Fate of L-(3,5- 3H) tyrosine in cell-free extracts and tissue cultures of melanoma cells: a new assay method for tyrosinase in living cells. Arch Biochem Biophys. 1972 Feb;148(2):548–557. doi: 10.1016/0003-9861(72)90173-7. [DOI] [PubMed] [Google Scholar]
  28. Phillips M. L., Yip C. C., Shevach E. M., Delovitch T. L. Photoaffinity labeling demonstrates binding between Ia molecules and nominal antigen on antigen-presenting cells. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5634–5638. doi: 10.1073/pnas.83.15.5634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ranson M., Posen S., Mason R. S. Human melanocytes as a target tissue for hormones: in vitro studies with 1 alpha-25, dihydroxyvitamin D3, alpha-melanocyte stimulating hormone, and beta-estradiol. J Invest Dermatol. 1988 Dec;91(6):593–598. doi: 10.1111/1523-1747.ep12477126. [DOI] [PubMed] [Google Scholar]
  30. Rossomando A. J., Payne D. M., Weber M. J., Sturgill T. W. Evidence that pp42, a major tyrosine kinase target protein, is a mitogen-activated serine/threonine protein kinase. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6940–6943. doi: 10.1073/pnas.86.18.6940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sakamoto A., Yanagisawa M., Sakurai T., Takuwa Y., Yanagisawa H., Masaki T. Cloning and functional expression of human cDNA for the ETB endothelin receptor. Biochem Biophys Res Commun. 1991 Jul 31;178(2):656–663. doi: 10.1016/0006-291x(91)90158-4. [DOI] [PubMed] [Google Scholar]
  32. Sakurai T., Yanagisawa M., Masaki T. Molecular characterization of endothelin receptors. Trends Pharmacol Sci. 1992 Mar;13(3):103–108. doi: 10.1016/0165-6147(92)90038-8. [DOI] [PubMed] [Google Scholar]
  33. Sakurai T., Yanagisawa M., Takuwa Y., Miyazaki H., Kimura S., Goto K., Masaki T. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature. 1990 Dec 20;348(6303):732–735. doi: 10.1038/348732a0. [DOI] [PubMed] [Google Scholar]
  34. Sevetson B. R., Kong X., Lawrence J. C., Jr Increasing cAMP attenuates activation of mitogen-activated protein kinase. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10305–10309. doi: 10.1073/pnas.90.21.10305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Titus J. A., Haugland R., Sharrow S. O., Segal D. M. Texas Red, a hydrophilic, red-emitting fluorophore for use with fluorescein in dual parameter flow microfluorometric and fluorescence microscopic studies. J Immunol Methods. 1982;50(2):193–204. doi: 10.1016/0022-1759(82)90225-3. [DOI] [PubMed] [Google Scholar]
  36. Wang Y., Simonson M. S., Pouysségur J., Dunn M. J. Endothelin rapidly stimulates mitogen-activated protein kinase activity in rat mesangial cells. Biochem J. 1992 Oct 15;287(Pt 2):589–594. doi: 10.1042/bj2870589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Whittaker J. R. Biosynthesis of a thouracil pheomelanin in embryonic pigment cells exposed to thouracil. J Biol Chem. 1971 Oct 25;246(20):6217–6226. [PubMed] [Google Scholar]
  38. Wiener E., Scarpa A. Activation of protein kinase C modulates the adenylate cyclase effector system of B-lymphocytes. J Biol Chem. 1989 Mar 15;264(8):4324–4328. [PubMed] [Google Scholar]
  39. Yaar M., Gilchrest B. A. Human melanocyte growth and differentiation: a decade of new data. J Invest Dermatol. 1991 Oct;97(4):611–617. doi: 10.1111/1523-1747.ep12482985. [DOI] [PubMed] [Google Scholar]
  40. Yada Y., Higuchi K., Imokawa G. Effects of endothelins on signal transduction and proliferation in human melanocytes. J Biol Chem. 1991 Sep 25;266(27):18352–18357. [PubMed] [Google Scholar]
  41. Yada Y., Ozeki T., Meguro S., Mori S., Nozawa Y. Signal transduction in the onset of terminal keratinocyte differentiation induced by 1 alpha,25-dihydroxyvitamin D3: role of protein kinase C translocation. Biochem Biophys Res Commun. 1989 Sep 29;163(3):1517–1522. doi: 10.1016/0006-291x(89)91152-2. [DOI] [PubMed] [Google Scholar]
  42. Yoshimasa T., Sibley D. R., Bouvier M., Lefkowitz R. J., Caron M. G. Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. Nature. 1987 May 7;327(6117):67–70. doi: 10.1038/327067a0. [DOI] [PubMed] [Google Scholar]
  43. Yoshimura M., Cooper D. M. Type-specific stimulation of adenylylcyclase by protein kinase C. J Biol Chem. 1993 Mar 5;268(7):4604–4607. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES