Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Feb 15;314(Pt 1):313–319. doi: 10.1042/bj3140313

Identification of a nuclear-specific cyclophilin which interacts with the proteinase inhibitor eglin c.

B B Wang 1, K J Hayenga 1, D G Payan 1, J M Fisher 1
PMCID: PMC1217042  PMID: 8660300

Abstract

We have identified a novel human cyclophilin (hCyP-60) which interacts with the proteinase inhibitor eglin c using the yeast two-hybrid system. A cDNA isolated from a Raji B lymphocyte library reveals a domain showing sequence similarity to known cyclophilins flanked by unique N- and C-terminal residues. In addition, hCyP-60 contains a tyrosine residue (Tyr 389) instead of a tryptophan residue found in most eukaryotic cyclophilins at a position important for cyclosporin binding. Northern and Western analysis reveal widespread expression with considerable tissue-specific variation. Specifically, the highest levels of mRNA are detected in the thymus, pancreas, testis, and K-562 cell line, while the most protein is detected in the kidney. Immunohistochemistry indicates a nuclear-specific localization both in transfected cells and tissue sections. hCyP-60's specific subcellular localization and conserved amino acid sequence suggest that it may play a specific role in the nucleus.

Full Text

The Full Text of this article is available as a PDF (612.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Baker E. K., Colley N. J., Zuker C. S. The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. EMBO J. 1994 Oct 17;13(20):4886–4895. doi: 10.1002/j.1460-2075.1994.tb06816.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bram R. J., Crabtree G. R. Calcium signalling in T cells stimulated by a cyclophilin B-binding protein. Nature. 1994 Sep 22;371(6495):355–358. doi: 10.1038/371355a0. [DOI] [PubMed] [Google Scholar]
  4. Clipstone N. A., Crabtree G. R. Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature. 1992 Jun 25;357(6380):695–697. doi: 10.1038/357695a0. [DOI] [PubMed] [Google Scholar]
  5. Dingwall C., Laskey R. A. Nuclear targeting sequences--a consensus? Trends Biochem Sci. 1991 Dec;16(12):478–481. doi: 10.1016/0968-0004(91)90184-w. [DOI] [PubMed] [Google Scholar]
  6. Emmel E. A., Verweij C. L., Durand D. B., Higgins K. M., Lacy E., Crabtree G. R. Cyclosporin A specifically inhibits function of nuclear proteins involved in T cell activation. Science. 1989 Dec 22;246(4937):1617–1620. doi: 10.1126/science.2595372. [DOI] [PubMed] [Google Scholar]
  7. Fields S., Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245–246. doi: 10.1038/340245a0. [DOI] [PubMed] [Google Scholar]
  8. Fisher J. M., Sossin W., Newcomb R., Scheller R. H. Multiple neuropeptides derived from a common precursor are differentially packaged and transported. Cell. 1988 Sep 9;54(6):813–822. doi: 10.1016/s0092-8674(88)91131-2. [DOI] [PubMed] [Google Scholar]
  9. Freskgård P. O., Bergenhem N., Jonsson B. H., Svensson M., Carlsson U. Isomerase and chaperone activity of prolyl isomerase in the folding of carbonic anhydrase. Science. 1992 Oct 16;258(5081):466–468. doi: 10.1126/science.1357751. [DOI] [PubMed] [Google Scholar]
  10. Fruman D. A., Burakoff S. J., Bierer B. E. Immunophilins in protein folding and immunosuppression. FASEB J. 1994 Apr 1;8(6):391–400. doi: 10.1096/fasebj.8.6.7513288. [DOI] [PubMed] [Google Scholar]
  11. Härd T., Fan P., Kearns D. R. A fluorescence study of the binding of Hoechst 33258 and DAPI to halogenated DNAs. Photochem Photobiol. 1990 Jan;51(1):77–86. doi: 10.1111/j.1751-1097.1990.tb01686.x. [DOI] [PubMed] [Google Scholar]
  12. Kahan B. D. Cyclosporine. N Engl J Med. 1989 Dec 21;321(25):1725–1738. doi: 10.1056/NEJM198912213212507. [DOI] [PubMed] [Google Scholar]
  13. Liu J., Chen C. M., Walsh C. T. Human and Escherichia coli cyclophilins: sensitivity to inhibition by the immunosuppressant cyclosporin A correlates with a specific tryptophan residue. Biochemistry. 1991 Mar 5;30(9):2306–2310. doi: 10.1021/bi00223a003. [DOI] [PubMed] [Google Scholar]
  14. Liu J., Farmer J. D., Jr, Lane W. S., Friedman J., Weissman I., Schreiber S. L. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991 Aug 23;66(4):807–815. doi: 10.1016/0092-8674(91)90124-h. [DOI] [PubMed] [Google Scholar]
  15. Luban J., Bossolt K. L., Franke E. K., Kalpana G. V., Goff S. P. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell. 1993 Jun 18;73(6):1067–1078. doi: 10.1016/0092-8674(93)90637-6. [DOI] [PubMed] [Google Scholar]
  16. Nair A. P., Hahn S., Banholzer R., Hirsch H. H., Moroni C. Cyclosporin A inhibits growth of autocrine tumour cell lines by destabilizing interleukin-3 mRNA. Nature. 1994 May 19;369(6477):239–242. doi: 10.1038/369239a0. [DOI] [PubMed] [Google Scholar]
  17. O'Keefe S. J., Tamura J., Kincaid R. L., Tocci M. J., O'Neill E. A. FK-506- and CsA-sensitive activation of the interleukin-2 promoter by calcineurin. Nature. 1992 Jun 25;357(6380):692–694. doi: 10.1038/357692a0. [DOI] [PubMed] [Google Scholar]
  18. Pflügl G., Kallen J., Schirmer T., Jansonius J. N., Zurini M. G., Walkinshaw M. D. X-ray structure of a decameric cyclophilin-cyclosporin crystal complex. Nature. 1993 Jan 7;361(6407):91–94. doi: 10.1038/361091a0. [DOI] [PubMed] [Google Scholar]
  19. Price E. R., Jin M., Lim D., Pati S., Walsh C. T., McKeon F. D. Cyclophilin B trafficking through the secretory pathway is altered by binding of cyclosporin A. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3931–3935. doi: 10.1073/pnas.91.9.3931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Price E. R., Zydowsky L. D., Jin M. J., Baker C. H., McKeon F. D., Walsh C. T. Human cyclophilin B: a second cyclophilin gene encodes a peptidyl-prolyl isomerase with a signal sequence. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1903–1907. doi: 10.1073/pnas.88.5.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rakitzis E. T. Isomerase modification. Nature. 1989 Aug 3;340(6232):351–352. doi: 10.1038/340351b0. [DOI] [PubMed] [Google Scholar]
  22. Ryffel B., Woerly G., Greiner B., Haendler B., Mihatsch M. J., Foxwell B. M. Distribution of the cyclosporine binding protein cyclophilin in human tissues. Immunology. 1991 Mar;72(3):399–404. [PMC free article] [PubMed] [Google Scholar]
  23. Schneider H., Charara N., Schmitz R., Wehrli S., Mikol V., Zurini M. G., Quesniaux V. F., Movva N. R. Human cyclophilin C: primary structure, tissue distribution, and determination of binding specificity for cyclosporins. Biochemistry. 1994 Jul 12;33(27):8218–8224. doi: 10.1021/bi00193a007. [DOI] [PubMed] [Google Scholar]
  24. Seemüller U., Eulitz M., Fritz H., Strobl A. Structure of the elastase-cathepsin G inhibitor of the leech Hirudo medicinalis. Hoppe Seylers Z Physiol Chem. 1980 Dec;361(12):1841–1846. [PubMed] [Google Scholar]
  25. Sigal N. H., Dumont F. J. Cyclosporin A, FK-506, and rapamycin: pharmacologic probes of lymphocyte signal transduction. Annu Rev Immunol. 1992;10:519–560. doi: 10.1146/annurev.iy.10.040192.002511. [DOI] [PubMed] [Google Scholar]
  26. Stamnes M. A., Shieh B. H., Chuman L., Harris G. L., Zuker C. S. The cyclophilin homolog ninaA is a tissue-specific integral membrane protein required for the proper synthesis of a subset of Drosophila rhodopsins. Cell. 1991 Apr 19;65(2):219–227. doi: 10.1016/0092-8674(91)90156-s. [DOI] [PubMed] [Google Scholar]
  27. Trandinh C. C., Pao G. M., Saier M. H., Jr Structural and evolutionary relationships among the immunophilins: two ubiquitous families of peptidyl-prolyl cis-trans isomerases. FASEB J. 1992 Dec;6(15):3410–3420. doi: 10.1096/fasebj.6.15.1464374. [DOI] [PubMed] [Google Scholar]
  28. Wang T., Donahoe P. K., Zervos A. S. Specific interaction of type I receptors of the TGF-beta family with the immunophilin FKBP-12. Science. 1994 Jul 29;265(5172):674–676. doi: 10.1126/science.7518616. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES