Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Feb 15;314(Pt 1):55–62. doi: 10.1042/bj3140055

Identification of the domains of neuronal nitric oxide synthase by limited proteolysis.

P N Lowe 1, D Smith 1, D K Stammers 1, V Riveros-Moreno 1, S Moncada 1, I Charles 1, A Boyhan 1
PMCID: PMC1217052  PMID: 8660310

Abstract

Nitric oxide synthase (EC 1.14.13.39) binds arginine and NADPH as substrates, and FAD, FMN, tetrahydrobiopterin, haem and calmodulin as cofactors. The protein consists of a central calmodulin-binding sequence flanked on the N-terminal side by a haem-binding region, analogous to cytochrome P-450, and on the C-terminal side by a region homologous with NADPH:cytochrome P-450 reductase. The structure of recombinant rat brain nitric oxide synthase was analysed by limited proteolyis. The products were identified by using antibodies to defined sequences, and by N-terminal sequencing. Low concentrations of trypsin produced three fragments, similar to those in a previous report [Sheta, McMillan and Masters (1994) J. Biol. Chem. 269, 15147-15153]: that of Mr approx. 135000 (N-terminus Gly-221) resulted from loss of the N-terminal extension (residues 1-220) unique to neuronal nitric oxide synthase. The fragments of Mr 90000 (haem region) and 80000 (reductase region, N-terminus Ala-728) were produced by cleavage within the calmodulin-binding region. With more extensive trypsin treatment, these species were shown to be transient, and three smaller, highly stable fragments of Mr 14000 (N-terminus Leu-744 within the calmodulin region), 60000 (N-terminus Gly-221) and 63000 (N-terminus Lys-856 within the FMN domain) were formed. The species of Mr approx. 60000 represents a domain retaining haem and nitroarginine binding. The two species of Mr 63000 and 14000 remain associated as a complex. This complex retains cytochrome c reductase activity, and thus is the complete reductase region, yet cleaved at Lys-856. This cleavage occurs within a sequence insertion relative to the FMN domain present in inducible nitric oxide synthase. Prolonged proteolysis treatment led to the production of a protein of Mr approx. 53000 (N-terminus Ala-953), corresponding to a cleavage between the FMN and FAD domains. The major products after chymotryptic digestion were similar to those with trypsin, although the pathway of intermediates differed. The haem domain was smaller, starting at residue 275, yet still retained the arginine binding site. These data have allowed us to identify stable domains representing both the arginine/haem-binding and the reductase regions.

Full Text

The Full Text of this article is available as a PDF (636.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. W., Baum P. R., Gesteland R. F. Processing of adenovirus 2-induced proteins. J Virol. 1973 Aug;12(2):241–252. doi: 10.1128/jvi.12.2.241-252.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Black S. D. On the domain structure of cytochrome P450 102 (BM-3): isolation and properties of a 45-kDa FAD/NADP domain. Biochem Biophys Res Commun. 1994 Aug 30;203(1):162–168. doi: 10.1006/bbrc.1994.2163. [DOI] [PubMed] [Google Scholar]
  3. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  4. Burnett R. M., Darling G. D., Kendall D. S., LeQuesne M. E., Mayhew S. G., Smith W. W., Ludwig M. L. The structure of the oxidized form of clostridial flavodoxin at 1.9-A resolution. J Biol Chem. 1974 Jul 25;249(14):4383–4392. [PubMed] [Google Scholar]
  5. Chartrain N. A., Geller D. A., Koty P. P., Sitrin N. F., Nussler A. K., Hoffman E. P., Billiar T. R., Hutchinson N. I., Mudgett J. S. Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene. J Biol Chem. 1994 Mar 4;269(9):6765–6772. [PubMed] [Google Scholar]
  6. Chen P. F., Tsai A. L., Wu K. K. Cysteine 184 of endothelial nitric oxide synthase is involved in heme coordination and catalytic activity. J Biol Chem. 1994 Oct 7;269(40):25062–25066. [PubMed] [Google Scholar]
  7. Emini E. A., Hughes J. V., Perlow D. S., Boger J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol. 1985 Sep;55(3):836–839. doi: 10.1128/jvi.55.3.836-839.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fujisawa H., Ogura T., Kurashima Y., Yokoyama T., Yamashita J., Esumi H. Expression of two types of nitric oxide synthase mRNA in human neuroblastoma cell lines. J Neurochem. 1994 Jul;63(1):140–145. doi: 10.1046/j.1471-4159.1994.63010140.x. [DOI] [PubMed] [Google Scholar]
  9. Furfine E. S., Harmon M. F., Paith J. E., Garvey E. P. Selective inhibition of constitutive nitric oxide synthase by L-NG-nitroarginine. Biochemistry. 1993 Aug 24;32(33):8512–8517. doi: 10.1021/bi00084a017. [DOI] [PubMed] [Google Scholar]
  10. Ghosh D. K., Stuehr D. J. Macrophage NO synthase: characterization of isolated oxygenase and reductase domains reveals a head-to-head subunit interaction. Biochemistry. 1995 Jan 24;34(3):801–807. doi: 10.1021/bi00003a013. [DOI] [PubMed] [Google Scholar]
  11. Hall A. V., Antoniou H., Wang Y., Cheung A. H., Arbus A. M., Olson S. L., Lu W. C., Kau C. L., Marsden P. A. Structural organization of the human neuronal nitric oxide synthase gene (NOS1). J Biol Chem. 1994 Dec 30;269(52):33082–33090. [PubMed] [Google Scholar]
  12. Hendriks W. Neuronal nitric oxide synthase contains a discs-large homologous region (DHR) sequence motif. Biochem J. 1995 Jan 15;305(Pt 2):687–688. doi: 10.1042/bj3050687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Knowles R. G., Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. doi: 10.1042/bj2980249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Li H. Y., Darwish K., Poulos T. L. Characterization of recombinant Bacillus megaterium cytochrome P-450 BM-3 and its two functional domains. J Biol Chem. 1991 Jun 25;266(18):11909–11914. [PubMed] [Google Scholar]
  15. Marletta M. A. Nitric oxide synthase: aspects concerning structure and catalysis. Cell. 1994 Sep 23;78(6):927–930. doi: 10.1016/0092-8674(94)90268-2. [DOI] [PubMed] [Google Scholar]
  16. Marsden P. A., Heng H. H., Scherer S. W., Stewart R. J., Hall A. V., Shi X. M., Tsui L. C., Schappert K. T. Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem. 1993 Aug 15;268(23):17478–17488. [PubMed] [Google Scholar]
  17. Miles J. S., Munro A. W., Rospendowski B. N., Smith W. E., McKnight J., Thomson A. J. Domains of the catalytically self-sufficient cytochrome P-450 BM-3. Genetic construction, overexpression, purification and spectroscopic characterization. Biochem J. 1992 Dec 1;288(Pt 2):503–509. doi: 10.1042/bj2880503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nakane M., Schmidt H. H., Pollock J. S., Förstermann U., Murad F. Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett. 1993 Jan 25;316(2):175–180. doi: 10.1016/0014-5793(93)81210-q. [DOI] [PubMed] [Google Scholar]
  19. Narhi L. O., Fulco A. J. Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem. 1986 Jun 5;261(16):7160–7169. [PubMed] [Google Scholar]
  20. Narhi L. O., Fulco A. J. Identification and characterization of two functional domains in cytochrome P-450BM-3, a catalytically self-sufficient monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem. 1987 May 15;262(14):6683–6690. [PubMed] [Google Scholar]
  21. Nathan C., Xie Q. W. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994 Sep 23;78(6):915–918. doi: 10.1016/0092-8674(94)90266-6. [DOI] [PubMed] [Google Scholar]
  22. Ogura T., Yokoyama T., Fujisawa H., Kurashima Y., Esumi H. Structural diversity of neuronal nitric oxide synthase mRNA in the nervous system. Biochem Biophys Res Commun. 1993 Jun 30;193(3):1014–1022. doi: 10.1006/bbrc.1993.1726. [DOI] [PubMed] [Google Scholar]
  23. Oster T., Boddupalli S. S., Peterson J. A. Expression, purification, and properties of the flavoprotein domain of cytochrome P-450BM-3. Evidence for the importance of the amino-terminal region for FMN binding. J Biol Chem. 1991 Nov 25;266(33):22718–22725. [PubMed] [Google Scholar]
  24. Porter T. D. An unusual yet strongly conserved flavoprotein reductase in bacteria and mammals. Trends Biochem Sci. 1991 Apr;16(4):154–158. doi: 10.1016/0968-0004(91)90059-5. [DOI] [PubMed] [Google Scholar]
  25. Porter T. D., Kasper C. B. NADPH-cytochrome P-450 oxidoreductase: flavin mononucleotide and flavin adenine dinucleotide domains evolved from different flavoproteins. Biochemistry. 1986 Apr 8;25(7):1682–1687. doi: 10.1021/bi00355a036. [DOI] [PubMed] [Google Scholar]
  26. Ravichandran K. G., Boddupalli S. S., Hasermann C. A., Peterson J. A., Deisenhofer J. Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450's. Science. 1993 Aug 6;261(5122):731–736. doi: 10.1126/science.8342039. [DOI] [PubMed] [Google Scholar]
  27. Richards M. K., Marletta M. A. Characterization of neuronal nitric oxide synthase and a C415H mutant, purified from a baculovirus overexpression system. Biochemistry. 1994 Dec 13;33(49):14723–14732. doi: 10.1021/bi00253a010. [DOI] [PubMed] [Google Scholar]
  28. Riveros-Moreno V., Beddell C., Moncada S. Nitric oxide synthase. Structural studies using anti-peptide antibodies. Eur J Biochem. 1993 Aug 1;215(3):801–808. doi: 10.1111/j.1432-1033.1993.tb18095.x. [DOI] [PubMed] [Google Scholar]
  29. Riveros-Moreno V., Heffernan B., Torres B., Chubb A., Charles I., Moncada S. Purification to homogeneity and characterisation of rat brain recombinant nitric oxide synthase. Eur J Biochem. 1995 May 15;230(1):52–57. doi: 10.1111/j.1432-1033.1995.tb20533.x. [DOI] [PubMed] [Google Scholar]
  30. Ruettinger R. T., Wen L. P., Fulco A. J. Coding nucleotide, 5' regulatory, and deduced amino acid sequences of P-450BM-3, a single peptide cytochrome P-450:NADPH-P-450 reductase from Bacillus megaterium. J Biol Chem. 1989 Jul 5;264(19):10987–10995. [PubMed] [Google Scholar]
  31. Sheta E. A., McMillan K., Masters B. S. Evidence for a bidomain structure of constitutive cerebellar nitric oxide synthase. J Biol Chem. 1994 May 27;269(21):15147–15153. [PubMed] [Google Scholar]
  32. Smith G. C., Tew D. G., Wolf C. R. Dissection of NADPH-cytochrome P450 oxidoreductase into distinct functional domains. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8710–8714. doi: 10.1073/pnas.91.18.8710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vorherr T., Knöpfel L., Hofmann F., Mollner S., Pfeuffer T., Carafoli E. The calmodulin binding domain of nitric oxide synthase and adenylyl cyclase. Biochemistry. 1993 Jun 15;32(23):6081–6088. doi: 10.1021/bi00074a020. [DOI] [PubMed] [Google Scholar]
  34. Watenpaugh K. D., Sieker L. C., Jensen L. H. The binding of riboflavin-5'-phosphate in a flavoprotein: flavodoxin at 2.0-Angstrom resolution. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3857–3860. doi: 10.1073/pnas.70.12.3857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wen L. P., Fulco A. J. Cloning of the gene encoding a catalytically self-sufficient cytochrome P-450 fatty acid monooxygenase induced by barbiturates in Bacillus megaterium and its functional expression and regulation in heterologous (Escherichia coli) and homologous (Bacillus megaterium) hosts. J Biol Chem. 1987 May 15;262(14):6676–6682. [PubMed] [Google Scholar]
  36. Zhang M., Vogel H. J. Characterization of the calmodulin-binding domain of rat cerebellar nitric oxide synthase. J Biol Chem. 1994 Jan 14;269(2):981–985. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES