Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Mar 1;314(Pt 2):391–395. doi: 10.1042/bj3140391

Protein biotinylation in higher plants: characterization of biotin holocarboxylase synthetase activity from pea (Pisum sativum) leaves.

G Tissot 1, D Job 1, R Douce 1, C Alban 1
PMCID: PMC1217060  PMID: 8670045

Abstract

Biotin holocarboxylase synthetase was partially purified from pea leaves by a sequence of ammonium sulphate fractionation and DEAE 52-cellulose chromatography. Enzyme activity was assayed using apo-(biotin carboxyl carrier protein) from an Escherichia coli bir A mutant affected in biotin holocarboxylase synthetase activity. Conditions for optimal catalytic activity and biochemical parameters of the plant enzyme were determined. This is the first direct evidence of the existence of biotin holocarboxylase synthetase activity in plants.

Full Text

The Full Text of this article is available as a PDF (351.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alban C., Baldet P., Axiotis S., Douce R. Purification and Characterization of 3-Methylcrotonyl-Coenzyme A Carboxylase from Higher Plant Mitochondria. Plant Physiol. 1993 Jul;102(3):957–965. doi: 10.1104/pp.102.3.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alban C., Baldet P., Douce R. Localization and characterization of two structurally different forms of acetyl-CoA carboxylase in young pea leaves, of which one is sensitive to aryloxyphenoxypropionate herbicides. Biochem J. 1994 Jun 1;300(Pt 2):557–565. doi: 10.1042/bj3000557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bai D. H., Moon T. W., López-Casillas F., Andrews P. C., Kim K. H. Analysis of the biotin-binding site on acetyl-CoA carboxylase from rat. Eur J Biochem. 1989 Jun 15;182(2):239–245. doi: 10.1111/j.1432-1033.1989.tb14823.x. [DOI] [PubMed] [Google Scholar]
  4. Baldet P., Alban C., Axiotis S., Douce R. Localization of free and bound biotin in cells from green pea leaves. Arch Biochem Biophys. 1993 May 15;303(1):67–73. doi: 10.1006/abbi.1993.1256. [DOI] [PubMed] [Google Scholar]
  5. Barker D. F., Campbell A. M. Genetic and biochemical characterization of the birA gene and its product: evidence for a direct role of biotin holoenzyme synthetase in repression of the biotin operon in Escherichia coli. J Mol Biol. 1981 Mar 15;146(4):469–492. doi: 10.1016/0022-2836(81)90043-7. [DOI] [PubMed] [Google Scholar]
  6. Barker D. F., Campbell A. M. The birA gene of Escherichia coli encodes a biotin holoenzyme synthetase. J Mol Biol. 1981 Mar 15;146(4):451–467. doi: 10.1016/0022-2836(81)90042-5. [DOI] [PubMed] [Google Scholar]
  7. Barker D. F., Campbell A. M. Use of bio-lac fusion strains to study regulation of biotin biosynthesis in Escherichia coli. J Bacteriol. 1980 Aug;143(2):789–800. doi: 10.1128/jb.143.2.789-800.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  9. Burri B. J., Sweetman L., Nyhan W. L. Mutant holocarboxylase synthetase: evidence for the enzyme defect in early infantile biotin-responsive multiple carboxylase deficiency. J Clin Invest. 1981 Dec;68(6):1491–1495. doi: 10.1172/JCI110402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cazzulo J. J., Sundaram T. K., Dilks S. N., Kornberg H. L. Synthesis of pyruvate carboxylase from its apoenzyme and (+)-biotin in Bacillus stearothermophilus. Purification and properties of the apoenzyme and the holoenzyme synthetase. Biochem J. 1971 May;122(5):653–661. doi: 10.1042/bj1220653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chandler C. S., Ballard F. J. Regulation of the breakdown rates of biotin-containing proteins in Swiss 3T3-L1 cells. Biochem J. 1988 May 1;251(3):749–755. doi: 10.1042/bj2510749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chiba Y., Suzuki Y., Aoki Y., Ishida Y., Narisawa K. Purification and properties of bovine liver holocarboxylase synthetase. Arch Biochem Biophys. 1994 Aug 15;313(1):8–14. doi: 10.1006/abbi.1994.1351. [DOI] [PubMed] [Google Scholar]
  13. Cronan J. E., Jr Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J Biol Chem. 1990 Jun 25;265(18):10327–10333. [PubMed] [Google Scholar]
  14. Cronan J. E., Jr The E. coli bio operon: transcriptional repression by an essential protein modification enzyme. Cell. 1989 Aug 11;58(3):427–429. doi: 10.1016/0092-8674(89)90421-2. [DOI] [PubMed] [Google Scholar]
  15. Dehaye L., Alban C., Job C., Douce R., Job D. Kinetics of the two forms of acetyl-CoA carboxylase from Pisum sativum. Correlation of the substrate specificity of the enzymes and sensitivity towards aryloxyphenoxypropionate herbicides. Eur J Biochem. 1994 Nov 1;225(3):1113–1123. doi: 10.1111/j.1432-1033.1994.1113b.x. [DOI] [PubMed] [Google Scholar]
  16. Eisenberg M. A., Prakash O., Hsiung S. C. Purification and properties of the biotin repressor. A bifunctional protein. J Biol Chem. 1982 Dec 25;257(24):15167–15173. [PubMed] [Google Scholar]
  17. Fall R. R. Analysis of microbial biotin proteins. Methods Enzymol. 1979;62:390–398. doi: 10.1016/0076-6879(79)62246-2. [DOI] [PubMed] [Google Scholar]
  18. Howard P. K., Shaw J., Otsuka A. J. Nucleotide sequence of the birA gene encoding the biotin operon repressor and biotin holoenzyme synthetase functions of Escherichia coli. Gene. 1985;35(3):321–331. doi: 10.1016/0378-1119(85)90011-3. [DOI] [PubMed] [Google Scholar]
  19. LANE M. D., YOUNG D. L., LYNEN F. THE ENZYMATIC SYNTHESIS OF HOLOTRANSCARBOXYLASE FROM APOTRANSCARBOXYLASE AND (+)-BIOTIN. I. PURIFICATION OF THE APOENZYME AND SYNTHETASE; CHARACTERISTICS OF THE REACTION. J Biol Chem. 1964 Sep;239:2858–2864. [PubMed] [Google Scholar]
  20. Leon-Del-Rio A., Gravel R. A. Sequence requirements for the biotinylation of carboxyl-terminal fragments of human propionyl-CoA carboxylase alpha subunit expressed in Escherichia coli. J Biol Chem. 1994 Sep 16;269(37):22964–22968. [PubMed] [Google Scholar]
  21. León-Del-Rio A., Leclerc D., Akerman B., Wakamatsu N., Gravel R. A. Isolation of a cDNA encoding human holocarboxylase synthetase by functional complementation of a biotin auxotroph of Escherichia coli. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4626–4630. doi: 10.1073/pnas.92.10.4626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lim F., Rohde M., Morris C. P., Wallace J. C. Pyruvate carboxylase in the yeast pyc mutant. Arch Biochem Biophys. 1987 Oct;258(1):259–264. doi: 10.1016/0003-9861(87)90343-2. [DOI] [PubMed] [Google Scholar]
  23. McAllister H. C., Coon M. J. Further studies on the properties of liver propionyl coenzyme A holocarboxylase synthetase and the specificity of holocarboxylase formation. J Biol Chem. 1966 Jun 25;241(12):2855–2861. [PubMed] [Google Scholar]
  24. Mishina M., Roggenkamp R., Schweizer E. Yeast mutants defective in acetyl-coenzyme A carboxylase and biotin: apocarboxylase ligase. Eur J Biochem. 1980 Oct;111(1):79–87. doi: 10.1111/j.1432-1033.1980.tb06077.x. [DOI] [PubMed] [Google Scholar]
  25. Nikolau B. J., Wurtele E. S., Stumpf P. K. Use of streptavidin to detect biotin-containing proteins in plants. Anal Biochem. 1985 Sep;149(2):448–453. doi: 10.1016/0003-2697(85)90596-2. [DOI] [PubMed] [Google Scholar]
  26. Robinson B. H., Oei J., Saunders M., Gravel R. [3H]biotin-labeled proteins in cultured human skin fibroblasts from patients with pyruvate carboxylase deficiency. J Biol Chem. 1983 May 25;258(10):6660–6664. [PubMed] [Google Scholar]
  27. Samols D., Thornton C. G., Murtif V. L., Kumar G. K., Haase F. C., Wood H. G. Evolutionary conservation among biotin enzymes. J Biol Chem. 1988 May 15;263(14):6461–6464. [PubMed] [Google Scholar]
  28. Schatz P. J. Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Biotechnology (N Y) 1993 Oct;11(10):1138–1143. doi: 10.1038/nbt1093-1138. [DOI] [PubMed] [Google Scholar]
  29. Shenoy B. C., Paranjape S., Murtif V. L., Kumar G. K., Samols D., Wood H. G. Effect of mutations at Met-88 and Met-90 on the biotination of Lys-89 of the apo 1.3S subunit of transcarboxylase. FASEB J. 1988 Jun;2(9):2505–2511. doi: 10.1096/fasebj.2.9.3131174. [DOI] [PubMed] [Google Scholar]
  30. Suzuki Y., Aoki Y., Ishida Y., Chiba Y., Iwamatsu A., Kishino T., Niikawa N., Matsubara Y., Narisawa K. Isolation and characterization of mutations in the human holocarboxylase synthetase cDNA. Nat Genet. 1994 Oct;8(2):122–128. doi: 10.1038/ng1094-122. [DOI] [PubMed] [Google Scholar]
  31. Takai T., Yokoyama C., Wada K., Tanabe T. Primary structure of chicken liver acetyl-CoA carboxylase deduced from cDNA sequence. J Biol Chem. 1988 Feb 25;263(6):2651–2657. [PubMed] [Google Scholar]
  32. Wang X., Wurtele E. S., Nikolau B. J. Regulation of [beta]-Methylcrotonyl-Coenzyme A Carboxylase Activity by Biotinylation of the Apoenzyme. Plant Physiol. 1995 Jul;108(3):1133–1139. doi: 10.1104/pp.108.3.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Xia W. L., Zhang J., Ahmad F. Biotin holocarboxylase synthetase: purification from rat liver cytosol and some properties. Biochem Mol Biol Int. 1994 Sep;34(2):225–232. [PubMed] [Google Scholar]
  34. Xu Y., Beckett D. Kinetics of biotinyl-5'-adenylate synthesis catalyzed by the Escherichia coli repressor of biotin biosynthesis and the stability of the enzyme-product complex. Biochemistry. 1994 Jun 14;33(23):7354–7360. doi: 10.1021/bi00189a041. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES