Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Mar 1;314(Pt 2):477–483. doi: 10.1042/bj3140477

Bilirubin glucuronidation by intact Gunn rat fibroblasts expressing bilirubin UDP-glucuronosyltransferase.

J Seppen 1, K Tada 1, S Hellwig 1, C T Bakker 1, V R Prasad 1, N Roy Chowdhury 1, J Roy Chowdhury 1, P J Bosma 1, R P Oude Elferink 1
PMCID: PMC1217075  PMID: 8670060

Abstract

Crigler-Najjar (CN) disease is an inherited disorder of bilirubin metabolism. The disease is caused by a deficiency of the hepatic enzyme bilirubin UDP-glucuronosyltransferase (B-UGT). Patients with CN disease have high serum levels of the toxic compound, unconjugated bilirubin. The only defect in bilirubin metabolism of CN patients is the absence of B-UGT activity. The transplantation of cells able to glucuronidate bilirubin should therefore lower serum bilirubin levels. The Gunn rat is the animal model of CN disease. Primary Gunn rat fibroblasts (GURF) were transduced with a recombinant retrovirus, capable of transferring B-UGT cDNA. A cell line was obtained expressing B-UGT at a level comparable to hepatocytes. Bilirubin added to the culture medium of these cells was glucuronidated and excreted. The B-UGT activities of transduced GURF and freshly isolated Wistar hepatocytes were compared at different bilirubin concentrations. The specific B-UGT activities of these two cell types were comparable when physiological bilirubin concentrations (5-10 microM) were present in the culture media. At higher bilirubin concentrations (20-80 microM) the hepatocytes were more active than the transduced GURF. We conclude that with the addition of only one enzyme (B-UGT) fibroblasts can perform the complete set of reactions necessary for bilirubin glucuronidation. The difference in B-UGT activity between transduced GURF and hepatocytes at 20-80 microM bilirubin can be explained by lower UDP-glucuronic acid and glutathione S-transferase levels in GURF. Our findings also indicate that these cells could be used to develop extrahepatic gene therapy for CN disease.

Full Text

The Full Text of this article is available as a PDF (356.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burchell B., Coughtrie M. W., Jansen P. L. Function and regulation of UDP-glucuronosyltransferase genes in health and liver disease: report of the Seventh International Workshop on Glucuronidation, September 1993, Pitlochry, Scotland. Hepatology. 1994 Dec;20(6):1622–1630. doi: 10.1002/hep.1840200636. [DOI] [PubMed] [Google Scholar]
  2. Campbell M. T., Dutton G. J. The formation and distribution of bilirubin monoglucuronide and diglucuronide in rat liver slices. Biochem J. 1979 Jun 1;179(3):473–477. doi: 10.1042/bj1790473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Castellani A. A., De Luca G., Rindi S., Salvini R., Tira M. E. Regulatory mechanisms of UDP-glucuronic acid biosynthesis in cultured human skin fibroblasts. Ital J Biochem. 1986 Sep-Oct;35(5):296–303. [PubMed] [Google Scholar]
  4. Cowger M. L. Mechanism of bilirubin toxicity on tissue culture cells: factors that affect toxicity, reversibility by albumin, and comparison with other respiratory poisons and surfactants. Biochem Med. 1971 Feb;5(1):1–16. doi: 10.1016/0006-2944(71)90069-x. [DOI] [PubMed] [Google Scholar]
  5. Demetriou A. A., Whiting J. F., Feldman D., Levenson S. M., Chowdhury N. R., Moscioni A. D., Kram M., Chowdhury J. R. Replacement of liver function in rats by transplantation of microcarrier-attached hepatocytes. Science. 1986 Sep 12;233(4769):1190–1192. doi: 10.1126/science.2426782. [DOI] [PubMed] [Google Scholar]
  6. Dranoff G., Jaffee E., Lazenby A., Golumbek P., Levitsky H., Brose K., Jackson V., Hamada H., Pardoll D., Mulligan R. C. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3539–3543. doi: 10.1073/pnas.90.8.3539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elferink R. P., Ottenhoff R., Liefting W., de Haan J., Jansen P. L. Hepatobiliary transport of glutathione and glutathione conjugate in rats with hereditary hyperbilirubinemia. J Clin Invest. 1989 Aug;84(2):476–483. doi: 10.1172/JCI114189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fevery J., Blanckaert N., Leroy P., Michiels R., Heirwegh K. P. Analysis of bilirubins in biological fluids by extraction and thin-layer chromatography of the intact tetrapyrroles: application to bile of patients with Gilbert's syndrome, hemolysis, or cholelithiasis. Hepatology. 1983 Mar-Apr;3(2):177–183. doi: 10.1002/hep.1840030207. [DOI] [PubMed] [Google Scholar]
  9. Grossman M., Raper S. E., Kozarsky K., Stein E. A., Engelhardt J. F., Muller D., Lupien P. J., Wilson J. M. Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nat Genet. 1994 Apr;6(4):335–341. doi: 10.1038/ng0494-335. [DOI] [PubMed] [Google Scholar]
  10. Habig W. H., Jakoby W. B. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 1981;77:398–405. doi: 10.1016/s0076-6879(81)77053-8. [DOI] [PubMed] [Google Scholar]
  11. Heirwegh K. P., Van de Vijver M., Fevery J. Assay and properties of dititonin-activated bilirubin uridine diphosphate glucuronyltransferase from rat liver. Biochem J. 1972 Sep;129(3):605–618. doi: 10.1042/bj1290605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Iyanagi T. Molecular basis of multiple UDP-glucuronosyltransferase isoenzyme deficiencies in the hyperbilirubinemic rat (Gunn rat). J Biol Chem. 1991 Dec 15;266(35):24048–24052. [PubMed] [Google Scholar]
  13. Jansen P. L., Mulder G. J., Burchell B., Bock K. W. New developments in glucuronidation research: report of a workshop on "glucuronidation, its role in health and disease". Hepatology. 1992 Mar;15(3):532–544. doi: 10.1002/hep.1840150328. [DOI] [PubMed] [Google Scholar]
  14. Kamisaka K., Gatmaitan Z., Moore C. L., Arias I. M. Ligandin reverses bilirubin inhibition of liver mitochondrial respiration in vitro. Pediatr Res. 1975 Dec;9(12):903–905. doi: 10.1203/00006450-197512000-00007. [DOI] [PubMed] [Google Scholar]
  15. LATHE G. H., WALKER M. The synthesis of bilirubin glucuronide in animal and human liver. Biochem J. 1958 Dec;70(4):705–712. doi: 10.1042/bj0700705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Matas A. J., Sutherland D. E., Steffes M. W., Mauer S. M., Sowe A., Simmons R. L., Najarian J. S. Hepatocellular transplantation for metabolic deficiencies: decrease of plasms bilirubin in Gunn rats. Science. 1976 May 28;192(4242):892–894. doi: 10.1126/science.818706. [DOI] [PubMed] [Google Scholar]
  18. Miners J. O., Mackenzie P. I. Drug glucuronidation in humans. Pharmacol Ther. 1991;51(3):347–369. doi: 10.1016/0163-7258(91)90065-t. [DOI] [PubMed] [Google Scholar]
  19. Moullier P., Bohl D., Heard J. M., Danos O. Correction of lysosomal storage in the liver and spleen of MPS VII mice by implantation of genetically modified skin fibroblasts. Nat Genet. 1993 Jun;4(2):154–159. doi: 10.1038/ng0693-154. [DOI] [PubMed] [Google Scholar]
  20. Noy N., Leonard M., Zakim D. The kinetics of interactions of bilirubin with lipid bilayers and with serum albumin. Biophys Chem. 1992 Feb;42(2):177–188. doi: 10.1016/0301-4622(92)85007-q. [DOI] [PubMed] [Google Scholar]
  21. Ordman A. B., Kirkwood S. UDPglucose dehydrogenase. Kinetics and their mechanistic implications. Biochim Biophys Acta. 1977 Mar 15;481(1):25–32. doi: 10.1016/0005-2744(77)90133-4. [DOI] [PubMed] [Google Scholar]
  22. Peters W. H., Allebes W. A., Jansen P. L., Poels L. G., Capel P. J. Characterization and tissue specificity of a monoclonal antibody against human uridine 5'-diphosphate-glucuronosyltransferase. Gastroenterology. 1987 Jul;93(1):162–169. doi: 10.1016/0016-5085(87)90329-5. [DOI] [PubMed] [Google Scholar]
  23. Ritter J. K., Chen F., Sheen Y. Y., Tran H. M., Kimura S., Yeatman M. T., Owens I. S. A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J Biol Chem. 1992 Feb 15;267(5):3257–3261. [PubMed] [Google Scholar]
  24. Rugstad H. E., Robinson S. H., Yannoni C., Tashjian A. H., Jr Transfer of bilirubin uridine diphosphate-glucuronyltransferase to enzyme-deficient rats. Science. 1970 Oct 30;170(3957):553–555. doi: 10.1126/science.170.3957.553. [DOI] [PubMed] [Google Scholar]
  25. Scharfmann R., Axelrod J. H., Verma I. M. Long-term in vivo expression of retrovirus-mediated gene transfer in mouse fibroblast implants. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4626–4630. doi: 10.1073/pnas.88.11.4626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Senafi S. B., Clarke D. J., Burchell B. Investigation of the substrate specificity of a cloned expressed human bilirubin UDP-glucuronosyltransferase: UDP-sugar specificity and involvement in steroid and xenobiotic glucuronidation. Biochem J. 1994 Oct 1;303(Pt 1):233–240. doi: 10.1042/bj3030233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Seppen J., Bosma P. J., Goldhoorn B. G., Bakker C. T., Chowdhury J. R., Chowdhury N. R., Jansen P. L., Oude Elferink R. P. Discrimination between Crigler-Najjar type I and II by expression of mutant bilirubin uridine diphosphate-glucuronosyltransferase. J Clin Invest. 1994 Dec;94(6):2385–2391. doi: 10.1172/JCI117604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Spivak W., Carey M. C. Reverse-phase h.p.l.c. separation, quantification and preparation of bilirubin and its conjugates from native bile. Quantitative analysis of the intact tetrapyrroles based on h.p.l.c. of their ethyl anthranilate azo derivatives. Biochem J. 1985 Feb 1;225(3):787–805. doi: 10.1042/bj2250787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thaler M. M. Bilirubin toxicity in hepatoma cells. Nat New Biol. 1971 Apr 14;230(15):218–219. doi: 10.1038/newbio230218a0. [DOI] [PubMed] [Google Scholar]
  30. Van Steenbergen W., Fevery J. Effects of uridine diphosphate glucuronosyltransferase activity on the maximal secretion rate of bilirubin conjugates in the rat. Gastroenterology. 1990 Aug;99(2):488–499. doi: 10.1016/0016-5085(90)91032-2. [DOI] [PubMed] [Google Scholar]
  31. Vienneau D. S., DeBoni U., Wells P. G. Potential genoprotective role for UDP-glucuronosyltransferases in chemical carcinogenesis: initiation of micronuclei by benzo(a)pyrene and benzo(e)pyrene in UDP-glucuronosyltransferase-deficient cultured rat skin fibroblasts. Cancer Res. 1995 Mar 1;55(5):1045–1051. [PubMed] [Google Scholar]
  32. Zucker S. D., Goessling W., Zeidel M. L., Gollan J. L. Membrane lipid composition and vesicle size modulate bilirubin intermembrane transfer. Evidence for membrane-directed trafficking of bilirubin in the hepatocyte. J Biol Chem. 1994 Jul 29;269(30):19262–19270. [PubMed] [Google Scholar]
  33. Zucker S. D., Storch J., Zeidel M. L., Gollan J. L. Mechanism of the spontaneous transfer of unconjugated bilirubin between small unilamellar phosphatidylcholine vesicles. Biochemistry. 1992 Mar 31;31(12):3184–3192. doi: 10.1021/bi00127a020. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES