Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Mar 1;314(Pt 2):485–490. doi: 10.1042/bj3140485

Noradrenaline increases glucose transport into brown adipocytes in culture by a mechanism different from that of insulin.

Y Shimizu 1, D Kielar 1, Y Minokoshi 1, T Shimazu 1
PMCID: PMC1217076  PMID: 8670061

Abstract

Glucose uptake into brown adipose tissue has been shown to be enhanced directly by noradrenaline (norepinephrine) released from sympathetic nerves. In this study we characterized the glucose transport system in cultured brown adipocytes, which responds to noradrenaline as well as insulin, and analysed the mechanism underlying the noradrenaline-induced increase in glucose transport. Insulin increased 2-deoxyglucose (dGlc) uptake progressively at concentrations from 10(-11) to 10(-6) M, with maximal stimulation at 10(-7) M. Noradrenaline concentrations ranging from 10(-8) to 10(-6) M also enhanced dGlc uptake, even in the absence of insulin. The effects of noradrenaline and insulin on dGlc uptake were additive. The stimulatory effect of noradrenaline was mimicked by the beta3-adrenergic agonist, BRL37344, at concentrations two orders lower than noradrenaline. Dibutyryl cyclic AMP also mimicked the stimulatory effect of noradrenaline, and the antagonist of cyclic AMP, cyclic AMP-S Rp-isomer, blocked the enhancement of glucose uptake due to noradrenaline. Furthermore Western blot analysis with an anti-phosphotyrosine antibody revealed that, in contrast with insulin, noradrenaline apparently does not stimulate intracellular phosphorylation of tyrosine, suggesting that the noradrenaline-induced increase in dGlc uptake depends on elevation of the intracellular cyclic AMP level and not on the signal chain common to insulin. When cells were incubated with insulin, the content of the muscle/adipocyte type of glucose transporter (GLUT4) in the plasma membrane increased, with a corresponding decrease in the amount in the microsomal membrane. In contrast, noradrenaline did not affect the subcellular distribution of GLUT4 or that of the HepG2/erythrocyte type of glucose transporter. Although insulin increased Vmax. and decreased the Km value for glucose uptake, the effect of noradrenaline was restricted to a pronounced decrease in Km. These results suggest that the mechanism by which noradrenaline stimulates glucose transport into brown adipocytes is not due to translocation of GLUT but is probably due to an increase in the intrinsic activity of GLUT, which is mediated by a cyclic AMP-dependent pathway.

Full Text

The Full Text of this article is available as a PDF (380.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carruthers A. Facilitated diffusion of glucose. Physiol Rev. 1990 Oct;70(4):1135–1176. doi: 10.1152/physrev.1990.70.4.1135. [DOI] [PubMed] [Google Scholar]
  2. Clancy B. M., Harrison S. A., Buxton J. M., Czech M. P. Protein synthesis inhibitors activate glucose transport without increasing plasma membrane glucose transporters in 3T3-L1 adipocytes. J Biol Chem. 1991 Jun 5;266(16):10122–10130. [PubMed] [Google Scholar]
  3. Cooney G. J., Caterson I. D., Newsholme E. A. The effect of insulin and noradrenaline on the uptake of 2-[1-14C]deoxyglucose in vivo by brown adipose tissue and other glucose-utilising tissues of the mouse. FEBS Lett. 1985 Sep 2;188(2):257–261. doi: 10.1016/0014-5793(85)80383-5. [DOI] [PubMed] [Google Scholar]
  4. Cushman S. W., Wardzala L. J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem. 1980 May 25;255(10):4758–4762. [PubMed] [Google Scholar]
  5. Czech M. P., Clancy B. M., Pessino A., Woon C. W., Harrison S. A. Complex regulation of simple sugar transport in insulin-responsive cells. Trends Biochem Sci. 1992 May;17(5):197–201. doi: 10.1016/0968-0004(92)90266-c. [DOI] [PubMed] [Google Scholar]
  6. Gould G. W., Holman G. D. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993 Oct 15;295(Pt 2):329–341. doi: 10.1042/bj2950329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HOFSTEE B. H. Non-inverted versus inverted plots in enzyme kinetics. Nature. 1959 Oct 24;184:1296–1298. doi: 10.1038/1841296b0. [DOI] [PubMed] [Google Scholar]
  8. Harrison S. A., Clancy B. M., Pessino A., Czech M. P. Activation of cell surface glucose transporters measured by photoaffinity labeling of insulin-sensitive 3T3-L1 adipocytes. J Biol Chem. 1992 Feb 25;267(6):3783–3788. [PubMed] [Google Scholar]
  9. Holman G. D., Kozka I. J., Clark A. E., Flower C. J., Saltis J., Habberfield A. D., Simpson I. A., Cushman S. W. Cell surface labeling of glucose transporter isoform GLUT4 by bis-mannose photolabel. Correlation with stimulation of glucose transport in rat adipose cells by insulin and phorbol ester. J Biol Chem. 1990 Oct 25;265(30):18172–18179. [PubMed] [Google Scholar]
  10. Ismail-Beigi F. Metabolic regulation of glucose transport. J Membr Biol. 1993 Jul;135(1):1–10. doi: 10.1007/BF00234646. [DOI] [PubMed] [Google Scholar]
  11. Kanai F., Ito K., Todaka M., Hayashi H., Kamohara S., Ishii K., Okada T., Hazeki O., Ui M., Ebina Y. Insulin-stimulated GLUT4 translocation is relevant to the phosphorylation of IRS-1 and the activity of PI3-kinase. Biochem Biophys Res Commun. 1993 Sep 15;195(2):762–768. doi: 10.1006/bbrc.1993.2111. [DOI] [PubMed] [Google Scholar]
  12. Lawrence J. C., Jr, Hiken J. F., James D. E. Phosphorylation of the glucose transporter in rat adipocytes. Identification of the intracellular domain at the carboxyl terminus as a target for phosphorylation in intact-cells and in vitro. J Biol Chem. 1990 Feb 5;265(4):2324–2332. [PubMed] [Google Scholar]
  13. Marette A., Bukowiecki L. J. Stimulation of glucose transport by insulin and norepinephrine in isolated rat brown adipocytes. Am J Physiol. 1989 Oct;257(4 Pt 1):C714–C721. doi: 10.1152/ajpcell.1989.257.4.C714. [DOI] [PubMed] [Google Scholar]
  14. Mercado C. L., Loeb J. N., Ismail-Beigi F. Enhanced glucose transport in response to inhibition of respiration in Clone 9 cells. Am J Physiol. 1989 Jul;257(1 Pt 1):C19–C28. doi: 10.1152/ajpcell.1989.257.1.C19. [DOI] [PubMed] [Google Scholar]
  15. Myers M. G., Jr, Sun X. J., White M. F. The IRS-1 signaling system. Trends Biochem Sci. 1994 Jul;19(7):289–293. doi: 10.1016/0968-0004(94)90007-8. [DOI] [PubMed] [Google Scholar]
  16. Nikami H., Shimizu Y., Sumida M., Minokoshi Y., Yoshida T., Saito M., Shimazu T. Expression of beta3-adrenoceptor and stimulation of glucose transport by beta3-agonists in brown adipocyte primary culture. J Biochem. 1996 Jan;119(1):120–125. doi: 10.1093/oxfordjournals.jbchem.a021196. [DOI] [PubMed] [Google Scholar]
  17. Reusch J. E., Sussman K. E., Draznin B. Inverse relationship between GLUT-4 phosphorylation and its intrinsic activity. J Biol Chem. 1993 Feb 15;268(5):3348–3351. [PubMed] [Google Scholar]
  18. Rosen O. M. After insulin binds. Science. 1987 Sep 18;237(4821):1452–1458. doi: 10.1126/science.2442814. [DOI] [PubMed] [Google Scholar]
  19. Shimizu Y., Kielar D., Masuno H., Minokoshi Y., Shimazu T. Dexamethasone induces the GLUT4 glucose transporter, and responses of glucose transport to norepinephrine and insulin in primary cultures of brown adipocytes. J Biochem. 1994 Jun;115(6):1069–1074. doi: 10.1093/oxfordjournals.jbchem.a124459. [DOI] [PubMed] [Google Scholar]
  20. Shimizu Y., Nikami H., Saito M. Sympathetic activation of glucose utilization in brown adipose tissue in rats. J Biochem. 1991 Nov;110(5):688–692. doi: 10.1093/oxfordjournals.jbchem.a123642. [DOI] [PubMed] [Google Scholar]
  21. Shimizu Y., Nikami H., Tsukazaki K., Machado U. F., Yano H., Seino Y., Saito M. Increased expression of glucose transporter GLUT-4 in brown adipose tissue of fasted rats after cold exposure. Am J Physiol. 1993 Jun;264(6 Pt 1):E890–E895. doi: 10.1152/ajpendo.1993.264.6.E890. [DOI] [PubMed] [Google Scholar]
  22. Shimizu Y., Shimazu T. Effects of wortmannin on increased glucose transport by insulin and norepinephrine in primary culture of brown adipocytes. Biochem Biophys Res Commun. 1994 Jul 29;202(2):660–665. doi: 10.1006/bbrc.1994.1981. [DOI] [PubMed] [Google Scholar]
  23. Slot J. W., Geuze H. J., Gigengack S., Lienhard G. E., James D. E. Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat. J Cell Biol. 1991 Apr;113(1):123–135. doi: 10.1083/jcb.113.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sudo M., Minokoshi Y., Shimazu T. Ventromedial hypothalamic stimulation enhances peripheral glucose uptake in anesthetized rats. Am J Physiol. 1991 Sep;261(3 Pt 1):E298–E303. doi: 10.1152/ajpendo.1991.261.3.E298. [DOI] [PubMed] [Google Scholar]
  25. Suzuki K., Kono T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc Natl Acad Sci U S A. 1980 May;77(5):2542–2545. doi: 10.1073/pnas.77.5.2542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Takahashi A., Shimazu T., Maruyama Y. Importance of sympathetic nerves for the stimulatory effect of cold exposure on glucose utilization in brown adipose tissue. Jpn J Physiol. 1992;42(4):653–664. doi: 10.2170/jjphysiol.42.653. [DOI] [PubMed] [Google Scholar]
  27. Takahashi A., Sudo M., Minokoshi Y., Shimazu T. Effects of ventromedial hypothalamic stimulation on glucose transport system in rat tissues. Am J Physiol. 1992 Dec;263(6 Pt 2):R1228–R1234. doi: 10.1152/ajpregu.1992.263.6.R1228. [DOI] [PubMed] [Google Scholar]
  28. White M. F., Kahn C. R. The insulin signaling system. J Biol Chem. 1994 Jan 7;269(1):1–4. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES