Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Mar 1;314(Pt 2):511–519. doi: 10.1042/bj3140511

Biologically active monomeric and heterodimeric recombinant human calpain I produced using the baculovirus expression system.

S L Meyer 1, D Bozyczko-Coyne 1, S K Mallya 1, C M Spais 1, R Bihovsky 1, J K Kaywooya 1, D M Lang 1, R W Scott 1, R Siman 1
PMCID: PMC1217080  PMID: 8670065

Abstract

Calpain I is a heterodimeric protein that is part of a family of calcium-activated intracellular cysteine proteases presumed to play a role in mediating signals transduced by calcium. Expression of bioactive recombinant human calpain I has been achieved using the baculovirus expression system, by either co-infection with two viruses, each expressing one of the subunits, or infection with a single virus containing both subunits. The approximately 80 kDa catalytic subunit exhibited calcium-dependent proteolytic activity when expressed alone or with the approximately 30 kDa regulatory subunit. Baculoviral recombinant calpain I appeared fully active in that the catalytic subunit in unpurified cell extracts exhibited calcium-dependent autocatalytic cleavage at the correct locus. The amount of approximately 80 kDa subunit accumulated at steady state was greatly increased by co-expression of the approximately 30 kDa subunit, suggesting a possible role for enzyme stabilization by the latter subunit. The recombinant human calpain I was purified to near homogeneity and compared with purified native human erythrocyte calpain I. The recombinant and native enzymes had equivalent inhibition constants for structurally diverse calpain inhibitors, identical calcium activation profiles, and similar specific activities, demonstrating the suitability of using the recombinant protein for studies of the native enzyme.

Full Text

The Full Text of this article is available as a PDF (380.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aoki K., Imajoh S., Ohno S., Emori Y., Koike M., Kosaki G., Suzuki K. Complete amino acid sequence of the large subunit of the low-Ca2+-requiring form of human Ca2+-activated neutral protease (muCANP) deduced from its cDNA sequence. FEBS Lett. 1986 Sep 15;205(2):313–317. doi: 10.1016/0014-5793(86)80919-x. [DOI] [PubMed] [Google Scholar]
  2. Barrett A. J., Kembhavi A. A., Brown M. A., Kirschke H., Knight C. G., Tamai M., Hanada K. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J. 1982 Jan 1;201(1):189–198. doi: 10.1042/bj2010189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  4. Cong J., Goll D. E., Peterson A. M., Kapprell H. P. The role of autolysis in activity of the Ca2+-dependent proteinases (mu-calpain and m-calpain). J Biol Chem. 1989 Jun 15;264(17):10096–10103. [PubMed] [Google Scholar]
  5. Coolican S. A., Hathaway D. R. Effect of L-alpha-phosphatidylinositol on a vascular smooth muscle Ca2+-dependent protease. Reduction of the Ca2+ requirement for autolysis. J Biol Chem. 1984 Oct 10;259(19):11627–11630. [PubMed] [Google Scholar]
  6. Crawford C., Brown N. R., Willis A. C. Studies of the active site of m-calpain and the interaction with calpastatin. Biochem J. 1993 Nov 15;296(Pt 1):135–142. doi: 10.1042/bj2960135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crawford C., Mason R. W., Wikstrom P., Shaw E. The design of peptidyldiazomethane inhibitors to distinguish between the cysteine proteinases calpain II, cathepsin L and cathepsin B. Biochem J. 1988 Aug 1;253(3):751–758. doi: 10.1042/bj2530751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Croall D. E., McGrody K. S. Domain structure of calpain: mapping the binding site for calpastatin. Biochemistry. 1994 Nov 15;33(45):13223–13230. doi: 10.1021/bi00249a008. [DOI] [PubMed] [Google Scholar]
  9. DeLuca C. I., Davies P. L., Samis J. A., Elce J. S. Molecular cloning and bacterial expression of cDNA for rat calpain II 80 kDa subunit. Biochim Biophys Acta. 1993 Oct 19;1216(1):81–93. doi: 10.1016/0167-4781(93)90040-k. [DOI] [PubMed] [Google Scholar]
  10. Dolle R. E., Singh J., Whipple D., Osifo I. K., Speier G., Graybill T. L., Gregory J. S., Harris A. L., Helaszek C. T., Miller R. E. Aspartyl alpha-((diphenylphosphinyl)oxy)methyl ketones as novel inhibitors of interleukin-1 beta converting enzyme. Utility of the diphenylphosphinic acid leaving group for the inhibition of cysteine proteases. J Med Chem. 1995 Jan 20;38(2):220–222. doi: 10.1021/jm00002a002. [DOI] [PubMed] [Google Scholar]
  11. Emori Y., Kawasaki H., Imajoh S., Imahori K., Suzuki K. Endogenous inhibitor for calcium-dependent cysteine protease contains four internal repeats that could be responsible for its multiple reactive sites. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3590–3594. doi: 10.1073/pnas.84.11.3590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Emori Y., Kawasaki H., Sugihara H., Imajoh S., Kawashima S., Suzuki K. Isolation and sequence analyses of cDNA clones for the large subunits of two isozymes of rabbit calcium-dependent protease. J Biol Chem. 1986 Jul 15;261(20):9465–9471. [PubMed] [Google Scholar]
  13. Gopalakrishna R., Barsky S. H. Hydrophobic association of calpains with subcellular organelles. Compartmentalization of calpains and the endogenous inhibitor calpastatin in tissues. J Biol Chem. 1986 Oct 25;261(30):13936–13942. [PubMed] [Google Scholar]
  14. Graham-Siegenthaler K., Gauthier S., Davies P. L., Elce J. S. Active recombinant rat calpain II. Bacterially produced large and small subunits associate both in vivo and in vitro. J Biol Chem. 1994 Dec 2;269(48):30457–30460. [PubMed] [Google Scholar]
  15. Harafuji H., Ogawa Y. Re-examination of the apparent binding constant of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid with calcium around neutral pH. J Biochem. 1980 May;87(5):1305–1312. doi: 10.1093/oxfordjournals.jbchem.a132868. [DOI] [PubMed] [Google Scholar]
  16. Harbeson S. L., Rich D. H. Inhibition of aminopeptidases by peptides containing ketomethylene and hydroxyethylene amide bond replacements. J Med Chem. 1989 Jun;32(6):1378–1392. doi: 10.1021/jm00126a039. [DOI] [PubMed] [Google Scholar]
  17. Imajoh S., Kawasaki H., Suzuki K. Limited autolysis of calcium-activated neutral protease (CANP): reduction of the Ca2+-requirement is due to the NH2-terminal processing of the large subunit. J Biochem. 1986 Sep;100(3):633–642. doi: 10.1093/oxfordjournals.jbchem.a121755. [DOI] [PubMed] [Google Scholar]
  18. Imajoh S., Kawasaki H., Suzuki K. The amino-terminal hydrophobic region of the small subunit of calcium-activated neutral protease (CANP) is essential for its activation by phosphatidylinositol. J Biochem. 1986 Apr;99(4):1281–1284. doi: 10.1093/oxfordjournals.jbchem.a135593. [DOI] [PubMed] [Google Scholar]
  19. Kawasaki H., Imajoh S., Kawashima S., Hayashi H., Suzuki K. The small subunits of calcium dependent proteases with different calcium sensitivities are identical. J Biochem. 1986 May;99(5):1525–1532. doi: 10.1093/oxfordjournals.jbchem.a135622. [DOI] [PubMed] [Google Scholar]
  20. Kikuchi T., Yumoto N., Sasaki T., Murachi T. Reconstitution of calpain I and calpain II from their subunits: interchangeability of the light subunits. Arch Biochem Biophys. 1984 Nov 1;234(2):639–645. doi: 10.1016/0003-9861(84)90314-x. [DOI] [PubMed] [Google Scholar]
  21. Kitahara A., Sasaki T., Kikuchi T., Yumoto N., Yoshimura N., Hatanaka M., Murachi T. Large-scale purification of porcine calpain I and calpain II and comparison of proteolytic fragments of their subunits. J Biochem. 1984 Jun;95(6):1759–1766. [PubMed] [Google Scholar]
  22. Krantz A., Copp L. J., Coles P. J., Smith R. A., Heard S. B. Peptidyl (acyloxy)methyl ketones and the quiescent affinity label concept: the departing group as a variable structural element in the design of inactivators of cysteine proteinases. Biochemistry. 1991 May 14;30(19):4678–4687. doi: 10.1021/bi00233a007. [DOI] [PubMed] [Google Scholar]
  23. Lee K. S., Frank S., Vanderklish P., Arai A., Lynch G. Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7233–7237. doi: 10.1073/pnas.88.16.7233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lee W. J., Adachi Y., Maki M., Hatanaka M., Murachi T. Factors influencing the binding of calpain I to human erythrocyte inside-out vesicles. Biochem Int. 1990 Oct;22(1):163–171. [PubMed] [Google Scholar]
  25. Li Z., Patil G. S., Golubski Z. E., Hori H., Tehrani K., Foreman J. E., Eveleth D. D., Bartus R. T., Powers J. C. Peptide alpha-keto ester, alpha-keto amide, and alpha-keto acid inhibitors of calpains and other cysteine proteases. J Med Chem. 1993 Oct 29;36(22):3472–3480. doi: 10.1021/jm00074a031. [DOI] [PubMed] [Google Scholar]
  26. Luckow V. A., Summers M. D. High level expression of nonfused foreign genes with Autographa californica nuclear polyhedrosis virus expression vectors. Virology. 1989 May;170(1):31–39. doi: 10.1016/0042-6822(89)90348-6. [DOI] [PubMed] [Google Scholar]
  27. Mellgren R. L. Proteolysis of nuclear proteins by mu-calpain and m-calpain. J Biol Chem. 1991 Jul 25;266(21):13920–13924. [PubMed] [Google Scholar]
  28. Melloni E., Pontremoli S., Michetti M., Sacco O., Sparatore B., Salamino F., Horecker B. L. Binding of protein kinase C to neutrophil membranes in the presence of Ca2+ and its activation by a Ca2+-requiring proteinase. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6435–6439. doi: 10.1073/pnas.82.19.6435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Melloni E., Pontremoli S. The calpains. Trends Neurosci. 1989 Nov;12(11):438–444. doi: 10.1016/0166-2236(89)90093-3. [DOI] [PubMed] [Google Scholar]
  30. Meyer S. L., Lang D. M., Forbes M. E., Knight E., Jr, Hirsch J. D., Trusko S. P., Scott R. W. Production and characterization of recombinant mouse brain-derived neurotrophic factor and rat neurotrophin-3 expressed in insect cells. J Neurochem. 1994 Mar;62(3):825–833. doi: 10.1046/j.1471-4159.1994.62030825.x. [DOI] [PubMed] [Google Scholar]
  31. Murakami T., Hatanaka M., Murachi T. The cytosol of human erythrocytes contains a highly Ca2+-sensitive thiol protease (calpain I) and its specific inhibitor protein (calpastatin). J Biochem. 1981 Dec;90(6):1809–1816. doi: 10.1093/oxfordjournals.jbchem.a133659. [DOI] [PubMed] [Google Scholar]
  32. Ohno S., Emori Y., Suzuki K. Nucleotide sequence of a cDNA coding for the small subunit of human calcium-dependent protease. Nucleic Acids Res. 1986 Jul 11;14(13):5559–5559. [PMC free article] [PubMed] [Google Scholar]
  33. Parkes C., Kembhavi A. A., Barrett A. J. Calpain inhibition by peptide epoxides. Biochem J. 1985 Sep 1;230(2):509–516. doi: 10.1042/bj2300509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roberts-Lewis J. M., Savage M. J., Marcy V. R., Pinsker L. R., Siman R. Immunolocalization of calpain I-mediated spectrin degradation to vulnerable neurons in the ischemic gerbil brain. J Neurosci. 1994 Jun;14(6):3934–3944. doi: 10.1523/JNEUROSCI.14-06-03934.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Saido T. C., Nagao S., Shiramine M., Tsukaguchi M., Sorimachi H., Murofushi H., Tsuchiya T., Ito H., Suzuki K. Autolytic transition of mu-calpain upon activation as resolved by antibodies distinguishing between the pre- and post-autolysis forms. J Biochem. 1992 Jan;111(1):81–86. doi: 10.1093/oxfordjournals.jbchem.a123723. [DOI] [PubMed] [Google Scholar]
  36. Saido T. C., Shibata M., Takenawa T., Murofushi H., Suzuki K. Positive regulation of mu-calpain action by polyphosphoinositides. J Biol Chem. 1992 Dec 5;267(34):24585–24590. [PubMed] [Google Scholar]
  37. Saido T. C., Yokota M., Nagao S., Yamaura I., Tani E., Tsuchiya T., Suzuki K., Kawashima S. Spatial resolution of fodrin proteolysis in postischemic brain. J Biol Chem. 1993 Nov 25;268(33):25239–25243. [PubMed] [Google Scholar]
  38. Sakihama T., Kakidani H., Zenita K., Yumoto N., Kikuchi T., Sasaki T., Kannagi R., Nakanishi S., Ohmori M., Takio K. A putative Ca2+-binding protein: structure of the light subunit of porcine calpain elucidated by molecular cloning and protein sequence analysis. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6075–6079. doi: 10.1073/pnas.82.18.6075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sasaki T., Kikuchi T., Yumoto N., Yoshimura N., Murachi T. Comparative specificity and kinetic studies on porcine calpain I and calpain II with naturally occurring peptides and synthetic fluorogenic substrates. J Biol Chem. 1984 Oct 25;259(20):12489–12494. [PubMed] [Google Scholar]
  40. Siman R., Noszek J. C. Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron. 1988 Jun;1(4):279–287. doi: 10.1016/0896-6273(88)90076-1. [DOI] [PubMed] [Google Scholar]
  41. Sorimachi H., Ishiura S., Suzuki K. A novel tissue-specific calpain species expressed predominantly in the stomach comprises two alternative splicing products with and without Ca(2+)-binding domain. J Biol Chem. 1993 Sep 15;268(26):19476–19482. [PubMed] [Google Scholar]
  42. Sorimachi H., Toyama-Sorimachi N., Saido T. C., Kawasaki H., Sugita H., Miyasaka M., Arahata K., Ishiura S., Suzuki K. Muscle-specific calpain, p94, is degraded by autolysis immediately after translation, resulting in disappearance from muscle. J Biol Chem. 1993 May 15;268(14):10593–10605. [PubMed] [Google Scholar]
  43. Suzuki K., Imajoh S., Emori Y., Kawasaki H., Minami Y., Ohno S. Calcium-activated neutral protease and its endogenous inhibitor. Activation at the cell membrane and biological function. FEBS Lett. 1987 Aug 17;220(2):271–277. doi: 10.1016/0014-5793(87)80828-1. [DOI] [PubMed] [Google Scholar]
  44. Suzuki K., Ishiura S. Effect of metal ions on the structure and activity of calcium-activated neutral protease (CANP). J Biochem. 1983 Jun;93(6):1463–1471. doi: 10.1093/oxfordjournals.jbchem.a134284. [DOI] [PubMed] [Google Scholar]
  45. Suzuki K., Saido T. C., Hirai S. Modulation of cellular signals by calpain. Ann N Y Acad Sci. 1992 Dec 31;674:218–227. doi: 10.1111/j.1749-6632.1992.tb27490.x. [DOI] [PubMed] [Google Scholar]
  46. Suzuki K., Tsuji S., Ishiura S. Effect of Ca2+ on the inhibition of calcium-activated neutral protease by leupeptin, antipain and epoxysuccinate derivatives. FEBS Lett. 1981 Dec 21;136(1):119–122. doi: 10.1016/0014-5793(81)81227-6. [DOI] [PubMed] [Google Scholar]
  47. Takahashi-Nakamura M., Tsuji S., Suzuki K., Imahori K. Purification and characterization of an inhibitor of calcium-activated neutral protease from rabbit skeletal muscle. J Biochem. 1981 Dec;90(6):1583–1589. doi: 10.1093/oxfordjournals.jbchem.a133632. [DOI] [PubMed] [Google Scholar]
  48. Takano E., Murachi T. Purification and some properties of human erythrocyte calpastatin. J Biochem. 1982 Dec;92(6):2021–2028. doi: 10.1093/oxfordjournals.jbchem.a134134. [DOI] [PubMed] [Google Scholar]
  49. Tian W. X., Tsou C. L. Determination of the rate constant of enzyme modification by measuring the substrate reaction in the presence of the modifier. Biochemistry. 1982 Mar 2;21(5):1028–1032. doi: 10.1021/bi00534a031. [DOI] [PubMed] [Google Scholar]
  50. Tsuji S., Imahori K. Studies on the Ca2+-activated neutral proteinase of rabbit skeletal muscle. I. The characterization of the 80 K and the 30 K subunits. J Biochem. 1981 Jul;90(1):233–240. doi: 10.1093/oxfordjournals.jbchem.a133455. [DOI] [PubMed] [Google Scholar]
  51. Vaughn J. L., Goodwin R. H., Tompkins G. J., McCawley P. The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro. 1977 Apr;13(4):213–217. doi: 10.1007/BF02615077. [DOI] [PubMed] [Google Scholar]
  52. Wang K. K., Villalobo A., Roufogalis B. D. Calmodulin-binding proteins as calpain substrates. Biochem J. 1989 Sep 15;262(3):693–706. doi: 10.1042/bj2620693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Yoshimura N., Kikuchi T., Sasaki T., Kitahara A., Hatanaka M., Murachi T. Two distinct Ca2+ proteases (calpain I and calpain II) purified concurrently by the same method from rat kidney. J Biol Chem. 1983 Jul 25;258(14):8883–8889. [PubMed] [Google Scholar]
  54. Yoshizawa T., Sorimachi H., Tomioka S., Ishiura S., Suzuki K. A catalytic subunit of calpain possesses full proteolytic activity. FEBS Lett. 1995 Jan 16;358(1):101–103. doi: 10.1016/0014-5793(94)01401-l. [DOI] [PubMed] [Google Scholar]
  55. Yoshizawa T., Sorimachi H., Tomioka S., Ishiura S., Suzuki K. Calpain dissociates into subunits in the presence of calcium ions. Biochem Biophys Res Commun. 1995 Mar 8;208(1):376–383. doi: 10.1006/bbrc.1995.1348. [DOI] [PubMed] [Google Scholar]
  56. Zimmerman U. J., Schlaepfer W. W. Two-stage autolysis of the catalytic subunit initiates activation of calpain I. Biochim Biophys Acta. 1991 Jun 24;1078(2):192–198. doi: 10.1016/0167-4838(91)99009-h. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES