Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Mar 1;314(Pt 2):577–585. doi: 10.1042/bj3140577

Lipoxygenase treatment render low-density lipoprotein susceptible to Cu2+-catalysed oxidation.

A Lass 1, J Belkner 1, H Esterbauer 1, H Kühn 1
PMCID: PMC1217088  PMID: 8670073

Abstract

Oxidative modification of low-density lipoprotein (LDL) has been implicated in foam-cell formation at all stages of atherosclerosis. Since transition metals and mammalian 15-lipoxygenases are capable of oxidizing LDL to its atherogenic form, a concerted action of these two catalysts in atherogenesis has been suggested. Cu2+-catalysed LDL oxidation is characterized by a kinetic lag period in which the lipophilic antioxidants are decomposed and by a complex mixture of unspecific oxidation products. We investigated the kinetics of the 15-lipoxygenase-catalysed oxygenation of LDL and found that the enzyme is capable of oxidizing LDL in the presence of the endogenous lipophilic antioxidants. In contrast with the Cu2+-catalysed reaction, no kinetic lag phase was detected. The pattern of products formed during short-term incubations was highly specific, with cholesterol-esterified (13S)-hydroperoxy-(9Z,11E)-octadecadinoic acid being the major product. However, after long-term incubations the product pattern was less specific. Preincubation with 15-lipoxygenase rendered human LDL more susceptible to Cu2+-catalysed oxidation as indicated by a dramatic shortening of the lag period. Addition of Cu2+ to lipoxygenase-treated LDL led to a steep decline in its antioxidant content and to a greatly reduced lag period. Interestingly, if normalized to a comparable hydroperoxide content, autoxidation and addition of exogenous hydroperoxy fatty acids both failed to overcome the lag period. The local peroxide concentrations in various LDL subcompartments will be discussed as a possible reason for this unexpected behaviour.

Full Text

The Full Text of this article is available as a PDF (698.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belkner J., Wiesner R., Rathman J., Barnett J., Sigal E., Kühn H. Oxygenation of lipoproteins by mammalian lipoxygenases. Eur J Biochem. 1993 Apr 1;213(1):251–261. doi: 10.1111/j.1432-1033.1993.tb17755.x. [DOI] [PubMed] [Google Scholar]
  2. Esterbauer H., Gebicki J., Puhl H., Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992 Oct;13(4):341–390. doi: 10.1016/0891-5849(92)90181-f. [DOI] [PubMed] [Google Scholar]
  3. Esterbauer H., Striegl G., Puhl H., Rotheneder M. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic Res Commun. 1989;6(1):67–75. doi: 10.3109/10715768909073429. [DOI] [PubMed] [Google Scholar]
  4. Folcik V. A., Nivar-Aristy R. A., Krajewski L. P., Cathcart M. K. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J Clin Invest. 1995 Jul;96(1):504–510. doi: 10.1172/JCI118062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gan Q. F., Witkop G. L., Sloane D. L., Straub K. M., Sigal E. Identification of a specific methionine in mammalian 15-lipoxygenase which is oxygenated by the enzyme product 13-HPODE: dissociation of sulfoxide formation from self-inactivation. Biochemistry. 1995 May 30;34(21):7069–7079. doi: 10.1021/bi00021a019. [DOI] [PubMed] [Google Scholar]
  6. Garssen G. J., Vliegenthart J. F., Boldingh J. The origin and structures of dimeric fatty acids from the anaerobic reaction between soya-bean lipoxygenase, linoleic acid and its hydroperoxide. Biochem J. 1972 Nov;130(2):435–442. doi: 10.1042/bj1300435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henriksen T., Mahoney E. M., Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6499–6503. doi: 10.1073/pnas.78.10.6499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holvoet P., Collen D. Oxidized lipoproteins in atherosclerosis and thrombosis. FASEB J. 1994 Dec;8(15):1279–1284. doi: 10.1096/fasebj.8.15.8001740. [DOI] [PubMed] [Google Scholar]
  9. Holvoet P., Perez G., Bernar H., Brouwers E., Vanloo B., Rosseneu M., Collen D. Stimulation with a monoclonal antibody (mAb4E4) of scavenger receptor-mediated uptake of chemically modified low density lipoproteins by THP-1-derived macrophages enhances foam cell generation. J Clin Invest. 1994 Jan;93(1):89–98. doi: 10.1172/JCI116988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kühn H., Belkner J., Suzuki H., Yamamoto S. Oxidative modification of human lipoproteins by lipoxygenases of different positional specificities. J Lipid Res. 1994 Oct;35(10):1749–1759. [PubMed] [Google Scholar]
  11. Kühn H., Belkner J., Wiesner R., Schewe T., Lankin V. Z., Tikhaze A. K. Structure elucidation of oxygenated lipids in human atherosclerotic lesions. Eicosanoids. 1992;5(1):17–22. [PubMed] [Google Scholar]
  12. Kühn H., Wiesner R., Rathmann J., Schewe T. Formation of ketodienoic fatty acids by the pure pea lipoxygenase-1. Eicosanoids. 1991;4(1):9–14. [PubMed] [Google Scholar]
  13. Ludwig P., Holzhütter H. G., Colosimo A., Silvestrini M. C., Schewe T., Rapoport S. M. A kinetic model for lipoxygenases based on experimental data with the lipoxygenase of reticulocytes. Eur J Biochem. 1987 Oct 15;168(2):325–337. doi: 10.1111/j.1432-1033.1987.tb13424.x. [DOI] [PubMed] [Google Scholar]
  14. Morton R. E., Steinbrunner J. V. Concentration of neutral lipids in the phospholipid surface of substrate particles determines lipid transfer protein activity. J Lipid Res. 1990 Sep;31(9):1559–1567. [PubMed] [Google Scholar]
  15. O'Leary V. J., Darley-Usmar V. M., Russell L. J., Stone D. Pro-oxidant effects of lipoxygenase-derived peroxides on the copper-initiated oxidation of low-density lipoprotein. Biochem J. 1992 Mar 15;282(Pt 3):631–634. doi: 10.1042/bj2820631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  17. Sattler W., Mohr D., Stocker R. Rapid isolation of lipoproteins and assessment of their peroxidation by high-performance liquid chromatography postcolumn chemiluminescence. Methods Enzymol. 1994;233:469–489. doi: 10.1016/s0076-6879(94)33053-0. [DOI] [PubMed] [Google Scholar]
  18. Schewe T., Rapoport S. M., Kühn H. Enzymology and physiology of reticulocyte lipoxygenase: comparison with other lipoxygenases. Adv Enzymol Relat Areas Mol Biol. 1986;58:191–272. doi: 10.1002/9780470123041.ch6. [DOI] [PubMed] [Google Scholar]
  19. Sparrow C. P., Parthasarathy S., Steinberg D. Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification. J Lipid Res. 1988 Jun;29(6):745–753. [PubMed] [Google Scholar]
  20. Steinberg D., Witztum J. L. Lipoproteins and atherogenesis. Current concepts. JAMA. 1990 Dec 19;264(23):3047–3052. [PubMed] [Google Scholar]
  21. Takano T., Mineo C. Atherosclerosis and molecular pathology: mechanisms of cholesteryl ester accumulation in foam cells and extracellular space of atherosclerotic lesions. J Pharmacobiodyn. 1990 Jul;13(7):385–413. doi: 10.1248/bpb1978.13.385. [DOI] [PubMed] [Google Scholar]
  22. Veldink G. A., Vliegenthart J. F., Boldingh J. Plant lipoxygenases. Prog Chem Fats Other Lipids. 1977;15(2):131–166. doi: 10.1016/0079-6832(77)90014-3. [DOI] [PubMed] [Google Scholar]
  23. Vuilleumier J. P., Keller H. E., Gysel D., Hunziker F. Clinical chemical methods for the routine assessment of the vitamin status in human populations. Part I: The fat-soluble vitamins A and E, and beta-carotene. Int J Vitam Nutr Res. 1983;53(3):265–272. [PubMed] [Google Scholar]
  24. Yamamoto Y., Brodsky M. H., Baker J. C., Ames B. N. Detection and characterization of lipid hydroperoxides at picomole levels by high-performance liquid chromatography. Anal Biochem. 1987 Jan;160(1):7–13. doi: 10.1016/0003-2697(87)90606-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES