Abstract
A ferricyanide-utilizing NADH dehydrogenase (NADH-ferricyanide oxidoreductase) from the plasma membrane of Ehrlich ascites tumour cells has been purified about 1500-fold to apparent homogeneity. The method comprises the isolation of an enriched plasma membrane fraction, solubilization with Triton X-100, ion-exchange chromatography, ammonium sulphate precipitation, Cibacron Blue chromatography and fast-protein liquid chromatography with a Superose-6 gel filtration column. The specific activity of the final pool was more than 61 units/mg protein. The pure enzyme examined by SDS/PAGE displayed only one type of subunit with an apparent molecular mass of 32.0 kDa. The molecular mass of the native protein (117.0 kDa) was estimated by gel filtration; these results suggest a protein composed of four subunits of identical molecular mass. The enzyme was stable in the pH interval between 6 and 9, with maximum activity at pH values from 7.5 to 8.5. The purified enzyme showed Michaelis-Menten kinetics for the substrates, with apparent K(m) values of 4.3 X 10(-5) M and 6.7 X 10(-5) M for NADH and ferricyanide respectively. The isolated protein was strongly inhibited by Zn2+ and the thio-specific reagents mersalyl and p-chloromercuribenzenesulphonic acid.
Full Text
The Full Text of this article is available as a PDF (439.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barr R., Sandelius A. S., Crane F. L., Morré D. J. Redox reactions of tonoplast and plasma membranes isolated from soybean hypocotyls by free-flow electrophoresis. Biochim Biophys Acta. 1986 Dec 3;852(2-3):254–261. doi: 10.1016/0005-2728(86)90230-6. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- CHANCE B., HESS B. Metabolic control mechanisms. I. Electron transfer in the mammalian cell. J Biol Chem. 1959 Sep;234:2404–2412. [PubMed] [Google Scholar]
- Crane F. L., Sun I. L., Barr R., Löw H. Electron and proton transport across the plasma membrane. J Bioenerg Biomembr. 1991 Oct;23(5):773–803. doi: 10.1007/BF00786001. [DOI] [PubMed] [Google Scholar]
- Crane F. L., Sun I. L., Clark M. G., Grebing C., Löw H. Transplasma-membrane redox systems in growth and development. Biochim Biophys Acta. 1985 Aug 1;811(3):233–264. doi: 10.1016/0304-4173(85)90013-8. [DOI] [PubMed] [Google Scholar]
- Del Castillo-Olivares A., Márquez J., Núez De Castro I., Medina M. A. Characterization of plasma membrane redox activity from Ehrlich cells. Cell Biochem Funct. 1994 Jun;12(2):149–152. doi: 10.1002/cbf.290120211. [DOI] [PubMed] [Google Scholar]
- Esmann M. ATPase and phosphatase activity of Na+,K+-ATPase: molar and specific activity, protein determination. Methods Enzymol. 1988;156:105–115. doi: 10.1016/0076-6879(88)56013-5. [DOI] [PubMed] [Google Scholar]
- Guerrini F., Valenti V., Pupillo P. Solubilization and Purification of NAD(P)H Dehydrogenase of Cucurbita Microsomes. Plant Physiol. 1987 Nov;85(3):828–834. doi: 10.1104/pp.85.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi M., Miyoshi T., Takashina S., Unemoto T. Purification of NADH-ferricyanide dehydrogenase and NADH-quinone reductase from Escherichia coli membranes and their roles in the respiratory chain. Biochim Biophys Acta. 1989 Oct 26;977(1):62–69. doi: 10.1016/s0005-2728(89)80009-x. [DOI] [PubMed] [Google Scholar]
- Henderson L. M., Chappell J. B., Jones O. T. Internal pH changes associated with the activity of NADPH oxidase of human neutrophils. Further evidence for the presence of an H+ conducting channel. Biochem J. 1988 Apr 15;251(2):563–567. doi: 10.1042/bj2510563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hjelmeland L. M., Chrambach A. Solubilization of functional membrane proteins. Methods Enzymol. 1984;104:305–318. doi: 10.1016/s0076-6879(84)04097-0. [DOI] [PubMed] [Google Scholar]
- Im W. B., Spector A. A. Sodium-dependent neutral amino acid transport in native and reconstituted membrane vesicles from Ehrlich cells. J Biol Chem. 1980 Jan 25;255(2):764–770. [PubMed] [Google Scholar]
- Kilberg M. S., Christensen H. N. Electron-transferring enzymes in the plasma membrane of the Ehrlich ascites tumor cell. Biochemistry. 1979 Apr 17;18(8):1525–1530. doi: 10.1021/bi00575a021. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Laporte F., Doussiere J., Mechin V., Vignais P. V. NADPH-cytochrome c reductase from rabbit peritoneal neutrophils. Purification, properties and function in the respiratory burst. Eur J Biochem. 1991 Feb 26;196(1):59–66. doi: 10.1111/j.1432-1033.1991.tb15785.x. [DOI] [PubMed] [Google Scholar]
- Le Maire M., Aggerbeck L. P., Monteilhet C., Andersen J. P., Møller J. V. The use of high-performance liquid chromatography for the determination of size and molecular weight of proteins: a caution and a list of membrane proteins suitable as standards. Anal Biochem. 1986 May 1;154(2):525–535. doi: 10.1016/0003-2697(86)90025-4. [DOI] [PubMed] [Google Scholar]
- Luque P., Márquez J., Núez de Castro I., Medina M. A. Sodium-dependent L-serine transport in plasma membrane vesicles isolated from Ehrlich cells by two-phase compartmentation. J Membr Biol. 1991 Sep;123(3):247–254. doi: 10.1007/BF01870407. [DOI] [PubMed] [Google Scholar]
- Luster D. G., Buckhout T. J. Purification and Identification of a Plasma Membrane Associated Electron Transport Protein from Maize (Zea mays L.) Roots. Plant Physiol. 1989 Nov;91(3):1014–1019. doi: 10.1104/pp.91.3.1014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markwell M. A., Haas S. M., Tolbert N. E., Bieber L. L. Protein determination in membrane and lipoprotein samples: manual and automated procedures. Methods Enzymol. 1981;72:296–303. doi: 10.1016/s0076-6879(81)72018-4. [DOI] [PubMed] [Google Scholar]
- Medina M. A., Núez de Castro I. Functional reconstitution of Ehrlich cell plasma membrane ferricyanide reductase. Biochem Biophys Res Commun. 1994 Dec 15;205(2):1109–1113. doi: 10.1006/bbrc.1994.2780. [DOI] [PubMed] [Google Scholar]
- Medina M. A., del Castillo-Olivares A., Márquez J., Núez de Castro I. Involvement of essential histidine residue(s) in the activity of Ehrlich cell plasma membrane NADH-ferricyanide oxidoreductase. Biochim Biophys Acta. 1994 Feb 23;1190(1):20–24. doi: 10.1016/0005-2736(94)90030-2. [DOI] [PubMed] [Google Scholar]
- Medina M. A., del Castillo-Olivares A., Schweigerer L. Plasma membrane redox activity correlates with N-myc expression in neuroblastoma cells. FEBS Lett. 1992 Oct 19;311(2):99–101. doi: 10.1016/0014-5793(92)81376-w. [DOI] [PubMed] [Google Scholar]
- Moreadith R. W., Fiskum G. Isolation of mitochondria from ascites tumor cells permeabilized with digitonin. Anal Biochem. 1984 Mar;137(2):360–367. doi: 10.1016/0003-2697(84)90098-8. [DOI] [PubMed] [Google Scholar]
- Márquez J., Sánchez-Jiménez F., Medina M. A., Quesada A. R., Núez de Castro I. Nitrogen metabolism in tumor bearing mice. Arch Biochem Biophys. 1989 Feb 1;268(2):667–675. doi: 10.1016/0003-9861(89)90335-4. [DOI] [PubMed] [Google Scholar]
- Nisimoto Y., Otsuka-Murakami H., Iwata S. NADPH-cytochrome c reductase from human neutrophil membranes: purification, characterization and localization. Biochem J. 1994 Feb 1;297(Pt 3):585–593. doi: 10.1042/bj2970585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park H. J., Reiser C. O., Kondruweit S., Erdmann H., Schmid R. D., Sprinzl M. Purification and characterization of a NADH oxidase from the thermophile Thermus thermophilus HB8. Eur J Biochem. 1992 May 1;205(3):881–885. doi: 10.1111/j.1432-1033.1992.tb16853.x. [DOI] [PubMed] [Google Scholar]
- Segura J. A., Aledo J. C., Gómez-Biedma S., Núez de Castro I., Márquez J. Tumor glutaminase purification. Protein Expr Purif. 1995 Jun;6(3):343–351. doi: 10.1006/prep.1995.1045. [DOI] [PubMed] [Google Scholar]
- Serrano A., Cordoba F., Gonzalez-Reyes J. A., Navas P., Villalba J. M. Purification and Characterization of Two Distinct NAD(P)H Dehydrogenases from Onion (Allium cepa L.) Root Plasma Membrane. Plant Physiol. 1994 Sep;106(1):87–96. doi: 10.1104/pp.106.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Villalba J. M., Canalejo A., Burón M. I., Córdoba F., Navas P. Thiol groups are involved in NADH-ascorbate free radical reductase activity of rat liver plasma membrane. Biochem Biophys Res Commun. 1993 Apr 30;192(2):707–713. doi: 10.1006/bbrc.1993.1472. [DOI] [PubMed] [Google Scholar]
- Villalba J. M., Navarro F., Córdoba F., Serrano A., Arroyo A., Crane F. L., Navas P. Coenzyme Q reductase from liver plasma membrane: purification and role in trans-plasma-membrane electron transport. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4887–4891. doi: 10.1073/pnas.92.11.4887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh C. Chemical approaches to the study of enzymes catalyzing redox transformations. Annu Rev Biochem. 1978;47:881–931. doi: 10.1146/annurev.bi.47.070178.004313. [DOI] [PubMed] [Google Scholar]
- del Castillo-Olivares A., Márquez J., Núez de Castro I., Medina M. A. Two phases of ferricyanide reductase activity in Ehrlich cell plasma membranes. Z Naturforsch C. 1992 Nov-Dec;47(11-12):929–931. doi: 10.1515/znc-1992-11-1223. [DOI] [PubMed] [Google Scholar]
