Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Mar 1;314(Pt 2):639–646. doi: 10.1042/bj3140639

The endopeptidase activity and the activation by Cl- of angiotensin-converting enzyme is evolutionarily conserved: purification and properties of an an angiotensin-converting enzyme from the housefly, Musca domestica.

N S Lamango 1, M Sajid 1, R E Isaac 1
PMCID: PMC1217095  PMID: 8670080

Abstract

A soluble 67 kDa angiotensin-converting enzyme (ACE) has been purified by lisinopril-Sepharose affinity column chromatography from adult houseflies, Musca domestica. The dipeptidyl carboxypeptidase activity towards benzoyl-Gly-His-Leu was inhibited by captopril (IC50 50 nM) and fosinoprilat (IC50 251 nM), two inhibitors of mammalian ACE, and was activated by Cl- (optimal Cl- concentration 600 mM). Musca ACE removed C-terminal dipeptides from angiotensin I, bradykinin [Leu5]enkephalin and [Met5]enkephalin and also functioned as an endopeptidase by hydrolysing dipeptideamides from [Leu5]enkephalinamide and [Met5]enkephalinamide, and a dipeptideamide and a tripeptideamide from substance P. Musca ACE was also able to cleave a tripeptide from both the N-terminus and C-terminus of luteinizing hormone-releasing hormone, with C-terminal hydrolysis predominating. Maximal N-terminal tripeptidase activity occurred at 150 mM NaCl, whereas the C-terminal tripeptidase activity continued to rise with increasing concentration of Cl- (0-0.5 M). Musca ACE displays properties of both the N- and C-domains of human ACE, indicating a high degree of conservation during evolution of the substrate specificity of ACE and its response to Cl-.

Full Text

The Full Text of this article is available as a PDF (436.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein K. E., Martin B. M., Edwards A. S., Bernstein E. A. Mouse angiotensin-converting enzyme is a protein composed of two homologous domains. J Biol Chem. 1989 Jul 15;264(20):11945–11951. [PubMed] [Google Scholar]
  2. Bünning P., Kleemann S. G., Riordan J. F. Essential residues in angiotensin converting enzyme: modification with 1-fluoro-2,4-dinitrobenzene. Biochemistry. 1990 Nov 20;29(46):10488–10492. doi: 10.1021/bi00498a010. [DOI] [PubMed] [Google Scholar]
  3. Bünning P., Riordan J. F. Activation of angiotensin converting enzyme by monovalent anions. Biochemistry. 1983 Jan 4;22(1):110–116. doi: 10.1021/bi00270a016. [DOI] [PubMed] [Google Scholar]
  4. Cascieri M. A., Bull H. G., Mumford R. A., Patchett A. A., Thornberry N. A., Liang T. Carboxyl-terminal tripeptidyl hydrolysis of substance P by purified rabbit lung angiotensin-converting enzyme and the potentiation of substance P activity in vivo by captopril and MK-422. Mol Pharmacol. 1984 Mar;25(2):287–293. [PubMed] [Google Scholar]
  5. Cornell M. J., Williams T. A., Lamango N. S., Coates D., Corvol P., Soubrier F., Hoheisel J., Lehrach H., Isaac R. E. Cloning and expression of an evolutionary conserved single-domain angiotensin converting enzyme from Drosophila melanogaster. J Biol Chem. 1995 Jun 9;270(23):13613–13619. doi: 10.1074/jbc.270.23.13613. [DOI] [PubMed] [Google Scholar]
  6. Deddish P. A., Wang J., Michel B., Morris P. W., Davidson N. O., Skidgel R. A., Erdös E. G. Naturally occurring active N-domain of human angiotensin I-converting enzyme. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7807–7811. doi: 10.1073/pnas.91.16.7807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dubreuil P., Fulcrand P., Rodriguez M., Fulcrand H., Laur J., Martinez J. Novel activity of angiotensin-converting enzyme. Hydrolysis of cholecystokinin and gastrin analogues with release of the amidated C-terminal dipeptide. Biochem J. 1989 Aug 15;262(1):125–130. doi: 10.1042/bj2620125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ehlers M. R., Fox E. A., Strydom D. J., Riordan J. F. Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7741–7745. doi: 10.1073/pnas.86.20.7741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ehlers M. R., Riordan J. F. Angiotensin-converting enzyme: zinc- and inhibitor-binding stoichiometries of the somatic and testis isozymes. Biochemistry. 1991 Jul 23;30(29):7118–7126. doi: 10.1021/bi00243a012. [DOI] [PubMed] [Google Scholar]
  10. El-Dorry H. A., Bull H. G., Iwata K., Thornberry N. A., Cordes E. H., Soffer R. L. Molecular and catalytic properties of rabbit testicular dipeptidyl carboxypeptidase. J Biol Chem. 1982 Dec 10;257(23):14128–14133. [PubMed] [Google Scholar]
  11. Erdös E. G. Angiotensin I converting enzyme and the changes in our concepts through the years. Lewis K. Dahl memorial lecture. Hypertension. 1990 Oct;16(4):363–370. doi: 10.1161/01.hyp.16.4.363. [DOI] [PubMed] [Google Scholar]
  12. Hooper N. M. Angiotensin converting enzyme: implications from molecular biology for its physiological functions. Int J Biochem. 1991;23(7-8):641–647. doi: 10.1016/0020-711x(91)90032-i. [DOI] [PubMed] [Google Scholar]
  13. Hooper N. M., Turner A. J. Isolation of two differentially glycosylated forms of peptidyl-dipeptidase A (angiotensin converting enzyme) from pig brain: a re-evaluation of their role in neuropeptide metabolism. Biochem J. 1987 Feb 1;241(3):625–633. doi: 10.1042/bj2410625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Howard T. E., Shai S. Y., Langford K. G., Martin B. M., Bernstein K. E. Transcription of testicular angiotensin-converting enzyme (ACE) is initiated within the 12th intron of the somatic ACE gene. Mol Cell Biol. 1990 Aug;10(8):4294–4302. doi: 10.1128/mcb.10.8.4294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jaspard E., Wei L., Alhenc-Gelas F. Differences in the properties and enzymatic specificities of the two active sites of angiotensin I-converting enzyme (kininase II). Studies with bradykinin and other natural peptides. J Biol Chem. 1993 May 5;268(13):9496–9503. [PubMed] [Google Scholar]
  16. Koike G., Krieger J. E., Jacob H. J., Mukoyama M., Pratt R. E., Dzau V. J. Angiotensin converting enzyme and genetic hypertension: cloning of rat cDNAs and characterization of the enzyme. Biochem Biophys Res Commun. 1994 Jan 14;198(1):380–386. doi: 10.1006/bbrc.1994.1053. [DOI] [PubMed] [Google Scholar]
  17. Kumar R. S., Kusari J., Roy S. N., Soffer R. L., Sen G. C. Structure of testicular angiotensin-converting enzyme. A segmental mosaic isozyme. J Biol Chem. 1989 Oct 5;264(28):16754–16758. [PubMed] [Google Scholar]
  18. Lamango N. S., Isaac R. E. Identification and properties of a peptidyl dipeptidase in the housefly, Musca domestica, that resembles mammalian angiotensin-converting enzyme. Biochem J. 1994 May 1;299(Pt 3):651–657. doi: 10.1042/bj2990651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lattion A. L., Soubrier F., Allegrini J., Hubert C., Corvol P., Alhenc-Gelas F. The testicular transcript of the angiotensin I-converting enzyme encodes for the ancestral, non-duplicated form of the enzyme. FEBS Lett. 1989 Jul 31;252(1-2):99–104. doi: 10.1016/0014-5793(89)80897-x. [DOI] [PubMed] [Google Scholar]
  20. Ondetti M. A., Cushman D. W. Enzymes of the renin-angiotensin system and their inhibitors. Annu Rev Biochem. 1982;51:283–308. doi: 10.1146/annurev.bi.51.070182.001435. [DOI] [PubMed] [Google Scholar]
  21. Perich R. B., Jackson B., Johnston C. I. Structural constraints of inhibitors for binding at two active sites on somatic angiotensin converting enzyme. Eur J Pharmacol. 1994 Feb 15;266(3):201–211. doi: 10.1016/0922-4106(94)90128-7. [DOI] [PubMed] [Google Scholar]
  22. Rousseau A., Michaud A., Chauvet M. T., Lenfant M., Corvol P. The hemoregulatory peptide N-acetyl-Ser-Asp-Lys-Pro is a natural and specific substrate of the N-terminal active site of human angiotensin-converting enzyme. J Biol Chem. 1995 Feb 24;270(8):3656–3661. doi: 10.1074/jbc.270.8.3656. [DOI] [PubMed] [Google Scholar]
  23. Shai S. Y., Fishel R. S., Martin B. M., Berk B. C., Bernstein K. E. Bovine angiotensin converting enzyme cDNA cloning and regulation. Increased expression during endothelial cell growth arrest. Circ Res. 1992 Jun;70(6):1274–1281. doi: 10.1161/01.res.70.6.1274. [DOI] [PubMed] [Google Scholar]
  24. Shapiro R., Holmquist B., Riordan J. F. Anion activation of angiotensin converting enzyme: dependence on nature of substrate. Biochemistry. 1983 Aug 2;22(16):3850–3857. doi: 10.1021/bi00285a021. [DOI] [PubMed] [Google Scholar]
  25. Shapiro R., Riordan J. F. Critical lysine residue at the chloride binding site of angiotensin converting enzyme. Biochemistry. 1983 Nov 8;22(23):5315–5321. doi: 10.1021/bi00292a010. [DOI] [PubMed] [Google Scholar]
  26. Skidgel R. A., Engelbrecht S., Johnson A. R., Erdös E. G. Hydrolysis of substance p and neurotensin by converting enzyme and neutral endopeptidase. Peptides. 1984 Jul-Aug;5(4):769–776. doi: 10.1016/0196-9781(84)90020-2. [DOI] [PubMed] [Google Scholar]
  27. Skidgel R. A., Erdös E. G. Novel activity of human angiotensin I converting enzyme: release of the NH2- and COOH-terminal tripeptides from the luteinizing hormone-releasing hormone. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1025–1029. doi: 10.1073/pnas.82.4.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Soffer R. L. Angiotensin-converting enzyme and the regulation of vasoactive peptides. Annu Rev Biochem. 1976;45:73–94. doi: 10.1146/annurev.bi.45.070176.000445. [DOI] [PubMed] [Google Scholar]
  29. Soubrier F., Alhenc-Gelas F., Hubert C., Allegrini J., John M., Tregear G., Corvol P. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9386–9390. doi: 10.1073/pnas.85.24.9386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Soubrier F., Hubert C., Testut P., Nadaud S., Alhenc-Gelas F., Corvol P. Molecular biology of the angiotensin I converting enzyme: I. Biochemistry and structure of the gene. J Hypertens. 1993 May;11(5):471–476. doi: 10.1097/00004872-199305000-00001. [DOI] [PubMed] [Google Scholar]
  31. Soubrier F., Wei L., Hubert C., Clauser E., Alhenc-Gelas F., Corvol P. Molecular biology of the angiotensin I converting enzyme: II. Structure-function. Gene polymorphism and clinical implications. J Hypertens. 1993 Jun;11(6):599–604. doi: 10.1097/00004872-199306000-00003. [DOI] [PubMed] [Google Scholar]
  32. Stephenson S. L., Kenny A. J. Metabolism of neuropeptides. Hydrolysis of the angiotensins, bradykinin, substance P and oxytocin by pig kidney microvillar membranes. Biochem J. 1987 Jan 1;241(1):237–247. doi: 10.1042/bj2410237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Thekkumkara T. J., Livingston W., 3rd, Kumar R. S., Sen G. C. Use of alternative polyadenylation sites for tissue-specific transcription of two angiotensin-converting enzyme mRNAs. Nucleic Acids Res. 1992 Feb 25;20(4):683–687. doi: 10.1093/nar/20.4.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wei L., Alhenc-Gelas F., Corvol P., Clauser E. The two homologous domains of human angiotensin I-converting enzyme are both catalytically active. J Biol Chem. 1991 May 15;266(14):9002–9008. [PubMed] [Google Scholar]
  35. Wei L., Clauser E., Alhenc-Gelas F., Corvol P. The two homologous domains of human angiotensin I-converting enzyme interact differently with competitive inhibitors. J Biol Chem. 1992 Jul 5;267(19):13398–13405. [PubMed] [Google Scholar]
  36. Williams T. A., Barnes K., Kenny A. J., Turner A. J., Hooper N. M. A comparison of the zinc contents and substrate specificities of the endothelial and testicular forms of porcine angiotensin converting enzyme and the preparation of isoenzyme-specific antisera. Biochem J. 1992 Dec 15;288(Pt 3):875–881. doi: 10.1042/bj2880875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yokosawa H., Endo S., Ogura Y., Ishii S. A new feature of angiotensin-converting enzyme in the brain: hydrolysis of substance P. Biochem Biophys Res Commun. 1983 Oct 31;116(2):735–742. doi: 10.1016/0006-291x(83)90586-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES