Abstract
Changes in free intracellular Ca2+ concentration regulate insulin secretion from pancreatic beta-cells. The existence of steep Ca2+ gradients within the beta-cell requires the presence of specialized Ca2+ exclusion systems. In this study we have characterized the plasma membrane Ca2+-ATPases (PMCAs) which extrude Ca2+ from the cytoplasm. PMCA isoform- and subtype-specific mRNA expression was investigated in rodent pancreatic alpha- and beta-cell lines, and in human and rat islets of Langerhans using reverse-transcription PCR with primers flanking the calmodulin-binding region of rat PMCA. The expression pattern of PMCA 1 and 2 was conserved in different species and islet-cell types since both rat and human islets of Langerhans and all cell lines tested contained the 1b and 2b forms. PMCA 4 isoform subtypes, however, were expressed in a cell-type-specific manner since beta-cells expressed PMCA 4b only, whereas in islets of Langerhans, which contain alpha, beta, delta and polypeptide-secreting cells, PMCA 4a and 4b were simultaneously present. No evidence was obtained for the expression of PMCA 3. Characterization of the beta-cell Ca2+-pump protein showed that it shared several similarities with the erythrocyte PMCA. It is a P-type ATPase; its phosphorylated intermediate was stabilized by La3+; it reacted with a PMCA-specific antibody; and it was not N-glycosylate. However, the beta-cell PMCA had a higher molecular mass than that of the erythrocyte; this difference could be explained by either predominant translation of the PMCA2 form, which has a molecular mass 3-8 kDa higher than the erythrocyte PMCA 1 and 4 proteins, or by a possible sequence insertion. Thus a unique combination of functionally distinct PMCA isoforms (1b, 2b, 4b) participates in Ca2+ homoeostasis in the beta-cell.
Full Text
The Full Text of this article is available as a PDF (310.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashcroft S. J., Hammonds P., Harrison D. E. Insulin secretory responses of a clonal cell line of simian virus 40-transformed B cells. Diabetologia. 1986 Oct;29(10):727–733. doi: 10.1007/BF00870283. [DOI] [PubMed] [Google Scholar]
- Bokvist K., Eliasson L., Ammälä C., Renström E., Rorsman P. Co-localization of L-type Ca2+ channels and insulin-containing secretory granules and its significance for the initiation of exocytosis in mouse pancreatic B-cells. EMBO J. 1995 Jan 3;14(1):50–57. doi: 10.1002/j.1460-2075.1995.tb06974.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brandt P., Neve R. L., Kammesheidt A., Rhoads R. E., Vanaman T. C. Analysis of the tissue-specific distribution of mRNAs encoding the plasma membrane calcium-pumping ATPases and characterization of an alternately spliced form of PMCA4 at the cDNA and genomic levels. J Biol Chem. 1992 Mar 5;267(7):4376–4385. [PubMed] [Google Scholar]
- Carafoli E. Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J. 1994 Oct;8(13):993–1002. [PubMed] [Google Scholar]
- Carafoli E., Stauffer T. The plasma membrane calcium pump: functional domains, regulation of the activity, and tissue specificity of isoform expression. J Neurobiol. 1994 Mar;25(3):312–324. doi: 10.1002/neu.480250311. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Delfino V. D., Gray D. W., Leow C. K., Shimizu S., Ferguson D. J., Morris P. J. A comparison of four solutions for cold storage of pancreatic islets. Transplantation. 1993 Dec;56(6):1325–1330. doi: 10.1097/00007890-199312000-00007. [DOI] [PubMed] [Google Scholar]
- Enyedi A., Filoteo A. G., Gardos G., Penniston J. T. Calmodulin-binding domains from isozymes of the plasma membrane Ca2+ pump have different regulatory properties. J Biol Chem. 1991 May 15;266(14):8952–8956. [PubMed] [Google Scholar]
- Enyedi A., Verma A. K., Heim R., Adamo H. P., Filoteo A. G., Strehler E. E., Penniston J. T. The Ca2+ affinity of the plasma membrane Ca2+ pump is controlled by alternative splicing. J Biol Chem. 1994 Jan 7;269(1):41–43. [PubMed] [Google Scholar]
- Freeman T. C., Howard A., Bentsen B. S., Legon S., Walters J. R. Cellular and regional expression of transcripts of the plasma membrane calcium pump PMCA1 in rabbit intestine. Am J Physiol. 1995 Jul;269(1 Pt 1):G126–G131. doi: 10.1152/ajpgi.1995.269.1.G126. [DOI] [PubMed] [Google Scholar]
- Gray D. W., McShane P., Grant A., Morris P. J. A method for isolation of islets of Langerhans from the human pancreas. Diabetes. 1984 Nov;33(11):1055–1061. doi: 10.2337/diab.33.11.1055. [DOI] [PubMed] [Google Scholar]
- Greeb J., Shull G. E. Molecular cloning of a third isoform of the calmodulin-sensitive plasma membrane Ca2+-transporting ATPase that is expressed predominantly in brain and skeletal muscle. J Biol Chem. 1989 Nov 5;264(31):18569–18576. [PubMed] [Google Scholar]
- Hammes A., Oberdorf S., Strehler E. E., Stauffer T., Carafoli E., Vetter H., Neyses L. Differentiation-specific isoform mRNA expression of the calmodulin-dependent plasma membrane Ca(2+)-ATPase. FASEB J. 1994 Apr 1;8(6):428–435. doi: 10.1096/fasebj.8.6.8168693. [DOI] [PubMed] [Google Scholar]
- Hilfiker H., Guerini D., Carafoli E. Cloning and expression of isoform 2 of the human plasma membrane Ca2+ ATPase. Functional properties of the enzyme and its splicing products. J Biol Chem. 1994 Oct 21;269(42):26178–26183. [PubMed] [Google Scholar]
- Hofmann F., James P., Vorherr T., Carafoli E. The C-terminal domain of the plasma membrane Ca2+ pump contains three high affinity Ca2+ binding sites. J Biol Chem. 1993 May 15;268(14):10252–10259. [PubMed] [Google Scholar]
- Keeton T. P., Burk S. E., Shull G. E. Alternative splicing of exons encoding the calmodulin-binding domains and C termini of plasma membrane Ca(2+)-ATPase isoforms 1, 2, 3, and 4. J Biol Chem. 1993 Feb 5;268(4):2740–2748. [PubMed] [Google Scholar]
- Keeton T. P., Shull G. E. Primary structure of rat plasma membrane Ca(2+)-ATPase isoform 4 and analysis of alternative splicing patterns at splice site A. Biochem J. 1995 Mar 15;306(Pt 3):779–785. doi: 10.1042/bj3060779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kessler F., Bennardini F., Bachs O., Serratosa J., James P., Caride A. J., Gazzotti P., Penniston J. T., Carafoli E. Partial purification and characterization of the Ca2(+)-pumping ATPase of the liver plasma membrane. J Biol Chem. 1990 Sep 15;265(26):16012–16019. [PubMed] [Google Scholar]
- Kessler F., Falchetto R., Heim R., Meili R., Vorherr T., Strehler E. E., Carafoli E. Study of calmodulin binding to the alternatively spliced C-terminal domain of the plasma membrane Ca2+ pump. Biochemistry. 1992 Dec 1;31(47):11785–11792. doi: 10.1021/bi00162a016. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lehotský J. Plasma membrane Ca(2+)-pump functional specialization in the brain. Complex of isoform expression and regulation by effectors. Mol Chem Neuropathol. 1995 Jun-Aug;25(2-3):175–187. doi: 10.1007/BF02960911. [DOI] [PubMed] [Google Scholar]
- Levy J., Gavin J. R., 3rd, Sowers J. R. Diabetes mellitus: a disease of abnormal cellular calcium metabolism? Am J Med. 1994 Mar;96(3):260–273. doi: 10.1016/0002-9343(94)90152-x. [DOI] [PubMed] [Google Scholar]
- Magosci M., Yamaki M., Penniston J. T., Dousa T. P. Localization of mRNAs coding for isozymes of plasma membrane Ca(2+)-ATPase pump in rat kidney. Am J Physiol. 1992 Jul;263(1 Pt 2):F7–14. doi: 10.1152/ajprenal.1992.263.1.F7. [DOI] [PubMed] [Google Scholar]
- Molnár E., Váradi A., McIlhinney R. A., Ashcroft S. J. Identification of functional ionotropic glutamate receptor proteins in pancreatic beta-cells and in islets of Langerhans. FEBS Lett. 1995 Sep 11;371(3):253–257. doi: 10.1016/0014-5793(95)00890-l. [DOI] [PubMed] [Google Scholar]
- Nadal A., Valdeolmillos M., Soria B. Metabolic regulation of intracellular calcium concentration in mouse pancreatic islets of Langerhans. Am J Physiol. 1994 Nov;267(5 Pt 1):E769–E774. doi: 10.1152/ajpendo.1994.267.5.E769. [DOI] [PubMed] [Google Scholar]
- Okorodudu A. O., Adegboyega P. A., Scholz C. I. Intracellular calcium and hydrogen ions in diabetes mellitus. Ann Clin Lab Sci. 1995 Sep-Oct;25(5):394–401. [PubMed] [Google Scholar]
- Rorsman P., Ammälä C., Berggren P. O., Bokvist K., Larsson O. Cytoplasmic calcium transients due to single action potentials and voltage-clamp depolarizations in mouse pancreatic B-cells. EMBO J. 1992 Aug;11(8):2877–2884. doi: 10.1002/j.1460-2075.1992.tb05356.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rorsman P., Ashcroft F. M., Trube G. Single Ca channel currents in mouse pancreatic B-cells. Pflugers Arch. 1988 Oct;412(6):597–603. doi: 10.1007/BF00583760. [DOI] [PubMed] [Google Scholar]
- Sarkadi B., Enyedi A., Földes-Papp Z., Gárdos G. Molecular characterization of the in situ red cell membrane calcium pump by limited proteolysis. J Biol Chem. 1986 Jul 15;261(20):9552–9557. [PubMed] [Google Scholar]
- Sarkadi B., Enyedi A., Penniston J. T., Verma A. K., Dux L., Molnár E., Gárdos G. Characterization of membrane calcium pumps by simultaneous immunoblotting and 32P radiography. Biochim Biophys Acta. 1988 Mar 22;939(1):40–46. doi: 10.1016/0005-2736(88)90044-2. [DOI] [PubMed] [Google Scholar]
- Sarkadi B., Szász I., Gárdos G. Characteristics and regulation of active calcium transport in inside-out red cell membrane vesicles. Biochim Biophys Acta. 1980 May 23;598(2):326–338. doi: 10.1016/0005-2736(80)90010-3. [DOI] [PubMed] [Google Scholar]
- Sarkar F. H., Ball D. E., Tsang W., Li Y. W., Kuo T. H. Use of the polymerase chain reaction for the detection of alternatively spliced mRNAs of plasma membrane calcium pump. DNA Cell Biol. 1993 Jun;12(5):435–440. doi: 10.1089/dna.1993.12.435. [DOI] [PubMed] [Google Scholar]
- Shull G. E., Greeb J. Molecular cloning of two isoforms of the plasma membrane Ca2+-transporting ATPase from rat brain. Structural and functional domains exhibit similarity to Na+,K+- and other cation transport ATPases. J Biol Chem. 1988 Jun 25;263(18):8646–8657. [PubMed] [Google Scholar]
- Stahl W. L., Keeton T. P., Eakin T. J. The plasma membrane Ca(2+)-ATPase mRNA isoform PMCA 4 is expressed at high levels in neurons of rat piriform cortex and neocortex. Neurosci Lett. 1994 Sep 12;178(2):267–270. doi: 10.1016/0304-3940(94)90775-7. [DOI] [PubMed] [Google Scholar]
- Stauffer T. P., Guerini D., Carafoli E. Tissue distribution of the four gene products of the plasma membrane Ca2+ pump. A study using specific antibodies. J Biol Chem. 1995 May 19;270(20):12184–12190. doi: 10.1074/jbc.270.20.12184. [DOI] [PubMed] [Google Scholar]
- Stauffer T. P., Hilfiker H., Carafoli E., Strehler E. E. Quantitative analysis of alternative splicing options of human plasma membrane calcium pump genes. J Biol Chem. 1993 Dec 5;268(34):25993–26003. [PubMed] [Google Scholar]
- Strehler E. E. Recent advances in the molecular characterization of plasma membrane Ca2+ pumps. J Membr Biol. 1991 Feb;120(1):1–15. doi: 10.1007/BF01868586. [DOI] [PubMed] [Google Scholar]
- Strehler E. E., Strehler-Page M. A., Vogel G., Carafoli E. mRNAs for plasma membrane calcium pump isoforms differing in their regulatory domain are generated by alternative splicing that involves two internal donor sites in a single exon. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6908–6912. doi: 10.1073/pnas.86.18.6908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutton R., Hammonds P., Hughes D., Clark A., Gray D. W., Morris P. J. Human pancreatic islet isolation with increased incubation temperatures and variable density gradients. Transplant Proc. 1990 Apr;22(2):758–759. [PubMed] [Google Scholar]
- Sutton R., Peters M., McShane P., Gray D. W., Morris P. J. Isolation of rat pancreatic islets by ductal injection of collagenase. Transplantation. 1986 Dec;42(6):689–691. doi: 10.1097/00007890-198612000-00022. [DOI] [PubMed] [Google Scholar]
- Toescu E. C., Petersen O. H. Region-specific activity of the plasma membrane Ca2+ pump and delayed activation of Ca2+ entry characterize the polarized, agonist-evoked Ca2+ signals in exocrine cells. J Biol Chem. 1995 Apr 14;270(15):8528–8535. doi: 10.1074/jbc.270.15.8528. [DOI] [PubMed] [Google Scholar]
- Váradi A., Molnár E., Ashcroft S. J. Characterisation of endoplasmic reticulum and plasma membrane Ca(2+)-ATPases in pancreatic beta-cells and in islets of Langerhans. Biochim Biophys Acta. 1995 May 24;1236(1):119–127. doi: 10.1016/0005-2736(95)00103-a. [DOI] [PubMed] [Google Scholar]
- Zacharias D. A., Dalrymple S. J., Strehler E. E. Transcript distribution of plasma membrane Ca2+ pump isoforms and splice variants in the human brain. Brain Res Mol Brain Res. 1995 Feb;28(2):263–272. doi: 10.1016/0169-328x(94)00215-z. [DOI] [PubMed] [Google Scholar]
- Zemel M. B. Insulin resistance vs. hyperinsulinemia in hypertension: insulin regulation of Ca2+ transport and Ca(2+)-regulation of insulin sensitivity. J Nutr. 1995 Jun;125(6 Suppl):1738S–1743S. doi: 10.1093/jn/125.suppl_6.1738S. [DOI] [PubMed] [Google Scholar]