Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Mar 1;314(Pt 2):687–693. doi: 10.1042/bj3140687

Characterization of the binding of diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) to rat liver cell membranes.

M Edgecombe 1, A G McLennan 1, M J Fisher 1
PMCID: PMC1217101  PMID: 8670086

Abstract

Diadenosine polyphosphates present in the extracellular environment can, through interaction with appropriate purinoceptors, influence a range of cellular activities. Here we have investigated the nature of the ligand:receptor interactions involved in diadenosine 5',5'''-P1, P4-tetraphosphate (Ap4A)-mediated stimulation of glycogen breakdown in isolated rat liver cells. [2-3H]Ap4A showed specific binding to both intact isolated liver cells and plasma membrane fractions prepared from isolated liver cells. HPLC analysis confirmed that binding was mediated by intact Ap4A and not by potential breakdown products (e.g. ATP, adenosine, etc.). Binding of [2-3H]Ap4A, to isolated liver cell plasma membrane preparations, was successfully displaced by a range of both naturally occurring and synthetic diadenosine polyphospates with the rank order potency Ap4A > or = Ap5A > Ap6A > Ap3A > Ap2A. [2-3H]Ap4A binding was not displaced by P1 effectors but was successfully displaced by a range of P2 effectors with the rank order potency 2-methylthio-ATP > ATP > ATP > or = adenosine 5'-[alpha beta-methylene]triphosphate > adenosine 5'-[beta gamma-methylene]triphospate. These findings are consistent with the interaction of Ap4A with a P2y-like subclass of purinoceptor and are discussed in relation to (1) the known purinoceptor populations in liver cell plasma membranes and (2) observations concerning the binding of diadenosine polyphosphates to purinoceptors in other tissues.

Full Text

The Full Text of this article is available as a PDF (478.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbracchio M. P., Burnstock G. Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther. 1994;64(3):445–475. doi: 10.1016/0163-7258(94)00048-4. [DOI] [PubMed] [Google Scholar]
  2. Baxi M. D., Vishwanatha J. K. Diadenosine polyphosphates: their biological and pharmacological significance. J Pharmacol Toxicol Methods. 1995 Jun;33(3):121–128. doi: 10.1016/1056-8719(94)00127-p. [DOI] [PubMed] [Google Scholar]
  3. Bo X., Fischer B., Maillard M., Jacobson K. A., Burnstock G. Comparative studies on the affinities of ATP derivatives for P2x-purinoceptors in rat urinary bladder. Br J Pharmacol. 1994 Aug;112(4):1151–1159. doi: 10.1111/j.1476-5381.1994.tb13204.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Burnstock G., Kennedy C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol. 1985;16(5):433–440. doi: 10.1016/0306-3623(85)90001-1. [DOI] [PubMed] [Google Scholar]
  6. Burnstock G., Warland J. J. P2-purinoceptors of two subtypes in the rabbit mesenteric artery: reactive blue 2 selectively inhibits responses mediated via the P2y-but not the P2x-purinoceptor. Br J Pharmacol. 1987 Feb;90(2):383–391. doi: 10.1111/j.1476-5381.1987.tb08968.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Busshardt E., Gerok W., Häussinger D. Regulation of hepatic parenchymal and non-parenchymal cell function by the diadenine nucleotides Ap3A and Ap4A. Biochim Biophys Acta. 1989 Feb 9;1010(2):151–159. doi: 10.1016/0167-4889(89)90155-9. [DOI] [PubMed] [Google Scholar]
  8. Castro E., Pintor J., Miras-Portugal M. T. Ca(2+)-stores mobilization by diadenosine tetraphosphate, Ap4A, through a putative P2Y purinoceptor in adrenal chromaffin cells. Br J Pharmacol. 1992 Aug;106(4):833–837. doi: 10.1111/j.1476-5381.1992.tb14421.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cooper C. L., Morris A. J., Harden T. K. Guanine nucleotide-sensitive interaction of a radiolabeled agonist with a phospholipase C-linked P2y-purinergic receptor. J Biol Chem. 1989 Apr 15;264(11):6202–6206. [PubMed] [Google Scholar]
  10. Craik K. M., McLennan A. G., Fisher M. J. Adenine dinucleotide-mediated activation of glycogen phosphorylase in isolated liver cells. Cell Signal. 1993 Jan;5(1):89–96. doi: 10.1016/0898-6568(93)90011-a. [DOI] [PubMed] [Google Scholar]
  11. Dickson A. J., Pogson C. I. The metabolic integrity of hepatocytes in sustained incubations. FEBS Lett. 1977 Nov 1;83(1):27–32. doi: 10.1016/0014-5793(77)80634-0. [DOI] [PubMed] [Google Scholar]
  12. Dixon C. J., Woods N. M., Cuthbertson K. S., Cobbold P. H. Evidence for two Ca2(+)-mobilizing purinoceptors on rat hepatocytes. Biochem J. 1990 Jul 15;269(2):499–502. doi: 10.1042/bj2690499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dubyak G. R., el-Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol. 1993 Sep;265(3 Pt 1):C577–C606. doi: 10.1152/ajpcell.1993.265.3.C577. [DOI] [PubMed] [Google Scholar]
  14. Fredholm B. B., Abbracchio M. P., Burnstock G., Daly J. W., Harden T. K., Jacobson K. A., Leff P., Williams M. Nomenclature and classification of purinoceptors. Pharmacol Rev. 1994 Jun;46(2):143–156. [PMC free article] [PubMed] [Google Scholar]
  15. Gasmi L., McLennan A. G., Edwards S. W. Priming of the respiratory burst of human neutrophils by the diadenosine polyphosphates, AP4A and AP3A: role of intracellular calcium. Biochem Biophys Res Commun. 1994 Jul 15;202(1):218–224. doi: 10.1006/bbrc.1994.1915. [DOI] [PubMed] [Google Scholar]
  16. Green A. K., Cobbold P. H., Dixon C. J. Elevated intracellular cyclic AMP exerts different modulatory effects on cytosolic free Ca2+ oscillations induced by ADP and ATP in single rat hepatocytes. Biochem J. 1994 Sep 15;302(Pt 3):949–955. doi: 10.1042/bj3020949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Green A. K., Dixon C. J., McLennan A. G., Cobbold P. H., Fisher M. J. Adenine dinucleotide-mediated cytosolic free Ca2+ oscillations in single hepatocytes. FEBS Lett. 1993 May 10;322(2):197–200. doi: 10.1016/0014-5793(93)81567-j. [DOI] [PubMed] [Google Scholar]
  18. Hilderman R. H., Lilien J. E., Zimmerman J. K., Tate D. H., Dimmick M. A., Jones G. B. Adenylated dinucleotide binding to the adenosine 5',5'''-P1,P4-tetraphosphate mouse heart receptor. Biochem Biophys Res Commun. 1994 Apr 29;200(2):749–755. doi: 10.1006/bbrc.1994.1514. [DOI] [PubMed] [Google Scholar]
  19. Hilderman R. H., Martin M., Zimmerman J. K., Pivorun E. B. Identification of a unique membrane receptor for adenosine 5',5"'-P1,P4-tetraphosphate. J Biol Chem. 1991 Apr 15;266(11):6915–6918. [PubMed] [Google Scholar]
  20. Hoyle C. H. Pharmacological activity of adenine dinucleotides in the periphery: possible receptor classes and transmitter function. Gen Pharmacol. 1990;21(6):827–831. doi: 10.1016/0306-3623(90)90440-w. [DOI] [PubMed] [Google Scholar]
  21. Keppens S. The complex interaction of ATP and UTP with isolated hepatocytes. How many receptors? Gen Pharmacol. 1993 Mar;24(2):283–289. doi: 10.1016/0306-3623(93)90304-g. [DOI] [PubMed] [Google Scholar]
  22. Keppens S., Vandekerckhove A., De Wulf H. Characterization of purinoceptors present on human liver plasma membranes. FEBS Lett. 1989 May 8;248(1-2):137–140. doi: 10.1016/0014-5793(89)80448-x. [DOI] [PubMed] [Google Scholar]
  23. Keppens S., Vandekerckhove A., De Wulf H. Characterization of the effects of adenosine 5'-[beta-thio]-diphosphate in rat liver. Br J Pharmacol. 1993 Mar;108(3):663–668. doi: 10.1111/j.1476-5381.1993.tb12858.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Keppens S., Vandekerckhove A., De Wulf H. Extracellular ATP and UTP exert similar effects on rat isolated hepatocytes. Br J Pharmacol. 1992 Feb;105(2):475–479. doi: 10.1111/j.1476-5381.1992.tb14278.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kikuta Y., Sekine A., Tezuka S., Okada K., Yamaura T., Nakajima H. Intravenous diadenosine tetraphosphate in dogs. Cardiovascular effects and influence on blood gases. Acta Anaesthesiol Scand. 1994 Apr;38(3):284–288. doi: 10.1111/j.1399-6576.1994.tb03890.x. [DOI] [PubMed] [Google Scholar]
  26. Klishin A., Lozovaya N., Pintor J., Miras-Portugal M. T., Krishtal O. Possible functional role of diadenosine polyphosphates: negative feedback for excitation in hippocampus. Neuroscience. 1994 Jan;58(2):235–236. doi: 10.1016/0306-4522(94)90030-2. [DOI] [PubMed] [Google Scholar]
  27. Lazarowski E. R., Watt W. C., Stutts M. J., Boucher R. C., Harden T. K. Pharmacological selectivity of the cloned human P2U-purinoceptor: potent activation by diadenosine tetraphosphate. Br J Pharmacol. 1995 Sep;116(1):1619–1627. doi: 10.1111/j.1476-5381.1995.tb16382.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Marchenko S. M., Obukhov A. G., Volkova T. M., Tarusova N. B. Bis(adenozil-5')tetrafosfat--chastichnyi agonist retseptorov ATF sensornykh neironov krysy. Neirofiziologiia. 1988;20(4):427–431. [PubMed] [Google Scholar]
  29. Nakamura T., Tomomura A., Noda C., Shimoji M., Ichihara A. Acquisition of a beta-adrenergic response by adult rat hepatocytes during primary culture. J Biol Chem. 1983 Aug 10;258(15):9283–9289. [PubMed] [Google Scholar]
  30. Okajima F., Tokumitsu Y., Kondo Y., Ui M. P2-purinergic receptors are coupled to two signal transduction systems leading to inhibition of cAMP generation and to production of inositol trisphosphate in rat hepatocytes. J Biol Chem. 1987 Oct 5;262(28):13483–13490. [PubMed] [Google Scholar]
  31. Pintor J., Díaz-Rey M. A., Miras-Portugal M. T. Ap4A and ADP-beta-S binding to P2 purinoceptors present on rat brain synaptic terminals. Br J Pharmacol. 1993 Apr;108(4):1094–1099. doi: 10.1111/j.1476-5381.1993.tb13510.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pintor J., Díaz-Rey M. A., Torres M., Miras-Portugal M. T. Presence of diadenosine polyphosphates--Ap4A and Ap5A--in rat brain synaptic terminals. Ca2+ dependent release evoked by 4-aminopyridine and veratridine. Neurosci Lett. 1992 Mar 2;136(2):141–144. doi: 10.1016/0304-3940(92)90034-5. [DOI] [PubMed] [Google Scholar]
  33. Pintor J., Miras-Portugal M. T. P2 purinergic receptors for diadenosine polyphosphates in the nervous system. Gen Pharmacol. 1995 Mar;26(2):229–235. doi: 10.1016/0306-3623(94)00182-m. [DOI] [PubMed] [Google Scholar]
  34. Pintor J., Porras A., Mora F., Miras-Portugal M. T. Amphetamine-induced release of diadenosine polyphosphates--Ap4A and Ap5A--from caudate putamen of conscious rat. Neurosci Lett. 1993 Feb 5;150(1):13–16. doi: 10.1016/0304-3940(93)90096-4. [DOI] [PubMed] [Google Scholar]
  35. Pintor J., Rotllán P., Torres M., Miras-Portugal M. T. Characterization and quantification of diadenosine hexaphosphate in chromaffin cells: granular storage and secretagogue-induced release. Anal Biochem. 1992 Feb 1;200(2):296–300. doi: 10.1016/0003-2697(92)90469-n. [DOI] [PubMed] [Google Scholar]
  36. Pintor J., Torres M., Castro E., Miras-Portugal M. T. Characterization of diadenosine tetraphosphate (Ap4A) binding sites in cultured chromaffin cells: evidence for a P2y site. Br J Pharmacol. 1991 Aug;103(4):1980–1984. doi: 10.1111/j.1476-5381.1991.tb12363.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Prescott M., McLennan A. G. Synthesis and applications of 8-azido photoaffinity analogs of P1,P3-bis(5'-adenosyl)triphosphate and P1,P4-bis(5'-adenosyl)tetraphosphate. Anal Biochem. 1990 Feb 1;184(2):330–337. doi: 10.1016/0003-2697(90)90690-b. [DOI] [PubMed] [Google Scholar]
  38. Schlüter H., Offers E., Brüggemann G., van der Giet M., Tepel M., Nordhoff E., Karas M., Spieker C., Witzel H., Zidek W. Diadenosine phosphates and the physiological control of blood pressure. Nature. 1994 Jan 13;367(6459):186–188. doi: 10.1038/367186a0. [DOI] [PubMed] [Google Scholar]
  39. Sillero M. A., Del Valle M., Zaera E., Michelena P., García A. G., Sillero A. Diadenosine 5',5"-P1,P4-tetraphosphate (Ap4A), ATP and catecholamine content in bovine adrenal medulla, chromaffin granules and chromaffin cells. Biochimie. 1994;76(5):404–409. doi: 10.1016/0300-9084(94)90116-3. [DOI] [PubMed] [Google Scholar]
  40. Walker J., Bossman P., Lackey B. R., Zimmerman J. K., Dimmick M. A., Hilderman R. H. The adenosine 5',5"',P1,P4-tetraphosphate receptor is at the cell surface of heart cells. Biochemistry. 1993 Dec 21;32(50):14009–14014. doi: 10.1021/bi00213a034. [DOI] [PubMed] [Google Scholar]
  41. Zamecnik P. C., Kim B., Gao M. J., Taylor G., Blackburn G. M. Analogues of diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) as potential anti-platelet-aggregation agents. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2370–2373. doi: 10.1073/pnas.89.6.2370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. el-Moatassim C., Dornand J., Mani J. C. Extracellular ATP and cell signalling. Biochim Biophys Acta. 1992 Feb 19;1134(1):31–45. doi: 10.1016/0167-4889(92)90025-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES