Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Mar 15;314(Pt 3):1009–1016. doi: 10.1042/bj3141009

Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2.

S K Bohm 1, W Kong 1, D Bromme 1, S P Smeekens 1, D C Anderson 1, A Connolly 1, M Kahn 1, N A Nelken 1, S R Coughlin 1, D G Payan 1, N W Bunnett 1
PMCID: PMC1217107  PMID: 8615752

Abstract

We used PCR to amplify proteinase activated receptor-2 (PAR-2) from human kidney cDNA. The open reading frame comprised 1191 bp and encoded a protein of 397 residues with 83% identity with mouse PAR-2. In KNRK cells (a line of kirsten murine sarcoma virus-transformed rat kidney epithelial cells) transfected with this cDNA, trypsin and activating peptide (AP) corresponding to the tethered ligand exposed by trypsin cleavage (SLIGKV-NH2) induced a prompt increase in cytosolic calcium ion concentration ([Ca2+]i). Human PAR-2 (hPAR-2) resided both on the plasma membrane and in the Golgi apparatus. hPAR-2 mRNA was highly expressed in human pancreas, kidney, colon, liver and small intestine, and by A549 lung and SW480 colon adenocarcinoma cells. Hybridization in situ revealed high expression in intestinal epithelial cells throughout the gut. Trypsin and AP stimulated an increase in [Ca2+]i in a rat intestinal epithelial cell line (hBRIE 380) and stimulated amylase secretion in isolated pancreatic acini. In A549 cells, which also responded to trypsin and AP with mobilization of cytosolic Ca2+, AP inhibited colony formation. Thus PAR-2 may serve as a trypsin sensor in the gut. Its expression by cells and tissues not normally exposed to pancreatic trypsin suggests that other proteases could serve as physiological activators.

Full Text

The Full Text of this article is available as a PDF (873.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akamizu T., Kosugi S., Kohn L. D. Thyrotropin receptor processing and interaction with thyrotropin. Biochem Biophys Res Commun. 1990 Jun 29;169(3):947–952. doi: 10.1016/0006-291x(90)91985-2. [DOI] [PubMed] [Google Scholar]
  2. Aponte G. W., Keddie A., Halldén G., Hess R., Link P. Polarized intestinal hybrid cell lines derived from primary culture: establishment and characterization. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5282–5286. doi: 10.1073/pnas.88.12.5282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bahou W. F., Kutok J. L., Wong A., Potter C. L., Coller B. S. Identification of a novel thrombin receptor sequence required for activation-dependent responses. Blood. 1994 Dec 15;84(12):4195–4202. [PubMed] [Google Scholar]
  4. Bohe H., Bohe M., Jönsson P., Lindström C., Ohlsson K. Quantification of pancreatic secretory trypsin inhibitor in colonic carcinoma and normal adjacent colonic mucosa. J Clin Pathol. 1992 Dec;45(12):1066–1069. doi: 10.1136/jcp.45.12.1066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bohe H., Bohe M., Lindström C., Ohlsson K. Immunohistochemical demonstration of pancreatic secretory trypsin inhibitor in normal and neoplastic colonic mucosa. J Clin Pathol. 1990 Nov;43(11):901–904. doi: 10.1136/jcp.43.11.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coughlin S. R. Protease-activated receptors start a family. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9200–9202. doi: 10.1073/pnas.91.20.9200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dennington P. M., Berndt M. C. The thrombin receptor. Clin Exp Pharmacol Physiol. 1994 May;21(5):349–358. doi: 10.1111/j.1440-1681.1994.tb02527.x. [DOI] [PubMed] [Google Scholar]
  8. Freeman T. C., Curry B. J., Calam J., Woodburn J. R. Pancreatic secretory trypsin inhibitor stimulates the growth of rat pancreatic carcinoma cells. Gastroenterology. 1990 Nov;99(5):1414–1420. doi: 10.1016/0016-5085(90)91170-b. [DOI] [PubMed] [Google Scholar]
  9. Fushiki T., Iwai K. Two hypotheses on the feedback regulation of pancreatic enzyme secretion. FASEB J. 1989 Feb;3(2):121–126. doi: 10.1096/fasebj.3.2.2644146. [DOI] [PubMed] [Google Scholar]
  10. Grady E. F., Garland A. M., Gamp P. D., Lovett M., Payan D. G., Bunnett N. W. Delineation of the endocytic pathway of substance P and its seven-transmembrane domain NK1 receptor. Mol Biol Cell. 1995 May;6(5):509–524. doi: 10.1091/mbc.6.5.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Halldén G., Holehouse E. L., Dong X., Aponte G. W. Expression of intestinal fatty acid binding protein in intestinal epithelial cell lines, hBRIE 380 cells. Am J Physiol. 1994 Oct;267(4 Pt 1):G730–G743. doi: 10.1152/ajpgi.1994.267.4.G730. [DOI] [PubMed] [Google Scholar]
  12. Hein L., Ishii K., Coughlin S. R., Kobilka B. K. Intracellular targeting and trafficking of thrombin receptors. A novel mechanism for resensitization of a G protein-coupled receptor. J Biol Chem. 1994 Nov 4;269(44):27719–27726. [PubMed] [Google Scholar]
  13. Hoxie J. A., Ahuja M., Belmonte E., Pizarro S., Parton R., Brass L. F. Internalization and recycling of activated thrombin receptors. J Biol Chem. 1993 Jun 25;268(18):13756–13763. [PubMed] [Google Scholar]
  14. Koivunen E., Huhtala M. L., Stenman U. H. Human ovarian tumor-associated trypsin. Its purification and characterization from mucinous cyst fluid and identification as an activator of pro-urokinase. J Biol Chem. 1989 Aug 25;264(24):14095–14099. [PubMed] [Google Scholar]
  15. Koshikawa N., Yasumitsu H., Nagashima Y., Umeda M., Miyazaki K. Identification of one- and two-chain forms of trypsinogen 1 produced by a human gastric adenocarcinoma cell line. Biochem J. 1994 Oct 1;303(Pt 1):187–190. doi: 10.1042/bj3030187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Niederau C., Liddle R. A., Williams J. A., Grendell J. H. Pancreatic growth: interaction of exogenous cholecystokinin, a protease inhibitor, and a cholecystokinin receptor antagonist in mice. Gut. 1987;28 (Suppl):63–69. doi: 10.1136/gut.28.suppl.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nystedt S., Emilsson K., Larsson A. K., Strömbeck B., Sundelin J. Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. Eur J Biochem. 1995 Aug 15;232(1):84–89. doi: 10.1111/j.1432-1033.1995.tb20784.x. [DOI] [PubMed] [Google Scholar]
  19. Nystedt S., Emilsson K., Wahlestedt C., Sundelin J. Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9208–9212. doi: 10.1073/pnas.91.20.9208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nystedt S., Larsson A. K., Aberg H., Sundelin J. The mouse proteinase-activated receptor-2 cDNA and gene. Molecular cloning and functional expression. J Biol Chem. 1995 Mar 17;270(11):5950–5955. doi: 10.1074/jbc.270.11.5950. [DOI] [PubMed] [Google Scholar]
  21. Okamoto A., Lovett M., Payan D. G., Bunnett N. W. Interactions between neutral endopeptidase (EC 3.4.24.11) and the substance P (NK1) receptor expressed in mammalian cells. Biochem J. 1994 May 1;299(Pt 3):683–693. doi: 10.1042/bj2990683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Siegfried J. M., Han Y. H., DeMichele M. A., Hunt J. D., Gaither A. L., Cuttitta F. Production of gastrin-releasing peptide by a non-small cell lung carcinoma cell line adapted to serum-free and growth factor-free conditions. J Biol Chem. 1994 Mar 18;269(11):8596–8603. [PubMed] [Google Scholar]
  23. Siegfried J. M., Owens S. E. Response of primary human lung carcinomas to autocrine growth factors produced by a lung carcinoma cell line. Cancer Res. 1988 Sep 1;48(17):4976–4981. [PubMed] [Google Scholar]
  24. Soifer S. J., Peters K. G., O'Keefe J., Coughlin S. R. Disparate temporal expression of the prothrombin and thrombin receptor genes during mouse development. Am J Pathol. 1994 Jan;144(1):60–69. [PMC free article] [PubMed] [Google Scholar]
  25. Soifer S. J., Peters K. G., O'Keefe J., Coughlin S. R. Disparate temporal expression of the prothrombin and thrombin receptor genes during mouse development. Am J Pathol. 1994 Jan;144(1):60–69. [PMC free article] [PubMed] [Google Scholar]
  26. Vu T. K., Hung D. T., Wheaton V. I., Coughlin S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991 Mar 22;64(6):1057–1068. doi: 10.1016/0092-8674(91)90261-v. [DOI] [PubMed] [Google Scholar]
  27. Vu T. K., Wheaton V. I., Hung D. T., Charo I., Coughlin S. R. Domains specifying thrombin-receptor interaction. Nature. 1991 Oct 17;353(6345):674–677. doi: 10.1038/353674a0. [DOI] [PubMed] [Google Scholar]
  28. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES