Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Mar 15;314(Pt 3):743–751. doi: 10.1042/bj3140743

Top-down control analysis of temperature effect on oxidative phosphorylation.

S Dufour 1, N Rousse 1, P Canioni 1, P Diolez 1
PMCID: PMC1217120  PMID: 8615765

Abstract

The effects of temperature on the control of respiration rate, phosphorylation rate, proton leakage rate, the protonmotive force and the effective ATP/O ratio were determined in isolated rat liver mitochondria over a range of respiratory conditions by applying top-down elasticity and control analyses. Simultaneous measurements of membrane potential, oxidation and phosphorylation rates were performed under various ATP turnover rates, ranging from state 4 to state 3. Although the activities of the three subsystems decreased with temperature (over 30-fold between 37 and 4 degrees C), the effective ATP/O ratio exhibited a maximum at 25 degrees C, far below the physiological value. Top-down elasticity analysis revealed that maximal membrane potential was maintained over the range of temperature studied, and that the proton leakage rate was considerably reduced at 4 degrees C. These results definitely rule out a possible uncoupling of mitochondria at low temperature. At 4 degrees C, the decrease in ATP/O ratio is explained by the relative decrease in phosphorylation processes revealed by the decrease in depolarization after ADP addition [Diolez and Moreau (1985) Biochim. Biophys. Acta 806, 56-63]. The change in depolarization between 37 and 25 degrees C was too small to explain the decrease in ATP/O ratio. This result is best explained by the changes in the elasticity of proton leakage to membrane potential between 37 and 25 degrees C, leading to a higher leak rate at 37 degrees C for the same value of membrane potential. Top-down control analysis showed that despite the important changes in activities of the three subsystems between 37 and 25 degrees C, the patterns of the control distribution are very similar. However, a different pattern was obtained at 4 degrees C under all phosphorylating conditions. Surprisingly, control by the proton leakage subsystem was almost unchanged, although both control patterns by substrate oxidation and phosphorylation subsystems were affected at 4 degrees C. In comparison with results for 25 and 37 degrees C, at 4 degrees C there was evidence for increased control by the phosphorylation subsystem over both fluxes of oxidation and phosphorylation as well as on the ATP/O ratio when the system is close to state 3. However, the pattern of control coefficients as a function of mitochondrial activity also showed enhanced control exerted by the substrate oxidation subsystem under all intermediate conditions. These results suggest that passive membrane permeability to protons is not involved in the effect of temperature on the control of oxidative phosphorylation.

Full Text

The Full Text of this article is available as a PDF (808.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Brand M. D., Chien L. F., Ainscow E. K., Rolfe D. F., Porter R. K. The causes and functions of mitochondrial proton leak. Biochim Biophys Acta. 1994 Aug 30;1187(2):132–139. doi: 10.1016/0005-2728(94)90099-x. [DOI] [PubMed] [Google Scholar]
  3. Brand M. D., Chien L. F., Diolez P. Experimental discrimination between proton leak and redox slip during mitochondrial electron transport. Biochem J. 1994 Jan 1;297(Pt 1):27–29. doi: 10.1042/bj2970027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brand M. D., Chien L. F., Rolfe D. F. Control of oxidative phosphorylation in liver mitochondria and hepatocytes. Biochem Soc Trans. 1993 Aug;21(3):757–762. doi: 10.1042/bst0210757. [DOI] [PubMed] [Google Scholar]
  5. Brand M. D., Harper M. E., Taylor H. C. Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes. Biochem J. 1993 May 1;291(Pt 3):739–748. doi: 10.1042/bj2910739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown G. C., Hafner R. P., Brand M. D. A 'top-down' approach to the determination of control coefficients in metabolic control theory. Eur J Biochem. 1990 Mar 10;188(2):321–325. doi: 10.1111/j.1432-1033.1990.tb15406.x. [DOI] [PubMed] [Google Scholar]
  7. Buttgereit F., Grant A., Müller M., Brand M. D. The effects of methylprednisolone on oxidative phosphorylation in Concanavalin-A-stimulated thymocytes. Top-down elasticity analysis and control analysis. Eur J Biochem. 1994 Jul 15;223(2):513–519. doi: 10.1111/j.1432-1033.1994.tb19020.x. [DOI] [PubMed] [Google Scholar]
  8. Cannon B., Lindberg O. Mitochondria from brown adipose tissue: isolation and properties. Methods Enzymol. 1979;55:65–78. doi: 10.1016/0076-6879(79)55010-1. [DOI] [PubMed] [Google Scholar]
  9. Diolez P., Kesseler A., Haraux F., Valerio M., Brinkmann K., Brand M. D. Regulation of oxidative phosphorylation in plant mitochondria. Biochem Soc Trans. 1993 Aug;21(3):769–773. doi: 10.1042/bst0210769. [DOI] [PubMed] [Google Scholar]
  10. Fell D. A., Sauro H. M. Metabolic control and its analysis. Additional relationships between elasticities and control coefficients. Eur J Biochem. 1985 May 2;148(3):555–561. doi: 10.1111/j.1432-1033.1985.tb08876.x. [DOI] [PubMed] [Google Scholar]
  11. Goubern M., Yazbeck J., Chapey M. F., Diolez P., Moreau F. Variations in energization parameters and proton conductance induced by cold adaptation and essential fatty acid deficiency in mitochondria of brown adipose tissue in the rat. Biochim Biophys Acta. 1990 Feb 2;1015(2):334–340. doi: 10.1016/0005-2728(90)90038-6. [DOI] [PubMed] [Google Scholar]
  12. Hafner R. P., Brown G. C., Brand M. D. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. Eur J Biochem. 1990 Mar 10;188(2):313–319. doi: 10.1111/j.1432-1033.1990.tb15405.x. [DOI] [PubMed] [Google Scholar]
  13. Harper M. E., Brand M. D. The quantitative contributions of mitochondrial proton leak and ATP turnover reactions to the changed respiration rates of hepatocytes from rats of different thyroid status. J Biol Chem. 1993 Jul 15;268(20):14850–14860. [PubMed] [Google Scholar]
  14. Heinrich R., Rapoport T. A. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem. 1974 Feb 15;42(1):89–95. doi: 10.1111/j.1432-1033.1974.tb03318.x. [DOI] [PubMed] [Google Scholar]
  15. Hutson S. M., Berkich D., Williams G. D., LaNoue K. F., Briggs R. W. 31P NMR visibility and characterization of rat liver mitochondrial matrix adenine nucleotides. Biochemistry. 1989 May 16;28(10):4325–4332. doi: 10.1021/bi00436a030. [DOI] [PubMed] [Google Scholar]
  16. Hutson S. M., Williams G. D., Berkich D. A., LaNoue K. F., Briggs R. W. A 31P NMR study of mitochondrial inorganic phosphate visibility: effects of Ca2+, Mn2+, and the pH gradient. Biochemistry. 1992 Feb 11;31(5):1322–1330. doi: 10.1021/bi00120a007. [DOI] [PubMed] [Google Scholar]
  17. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  18. Kesseler A., Brand M. D. Effects of cadmium on the control and internal regulation of oxidative phosphorylation in potato tuber mitochondria. Eur J Biochem. 1994 Nov 1;225(3):907–922. doi: 10.1111/j.1432-1033.1994.0907b.x. [DOI] [PubMed] [Google Scholar]
  19. Kesseler A., Brand M. D. Localisation of the sites of action of cadmium on oxidative phosphorylation in potato tuber mitochondria using top-down elasticity analysis. Eur J Biochem. 1994 Nov 1;225(3):897–906. doi: 10.1111/j.1432-1033.1994.0897b.x. [DOI] [PubMed] [Google Scholar]
  20. Kesseler A., Brand M. D. Quantitative determination of the regulation of oxidative phosphorylation by cadmium in potato tuber mitochondria. Eur J Biochem. 1994 Nov 1;225(3):923–935. doi: 10.1111/j.1432-1033.1994.0923b.x. [DOI] [PubMed] [Google Scholar]
  21. Kesseler A., Diolez P., Brinkmann K., Brand M. D. Characterisation of the control of respiration in potato tuber mitochondria using the top-down approach of metabolic control analysis. Eur J Biochem. 1992 Dec 15;210(3):775–784. doi: 10.1111/j.1432-1033.1992.tb17480.x. [DOI] [PubMed] [Google Scholar]
  22. NISHIMURA M., ITO T., CHANCE B. Studies on bacterial photophosphorylation. III. A sensitive and rapid method of determination of photophosphorylation. Biochim Biophys Acta. 1962 May 7;59:177–182. [PubMed] [Google Scholar]
  23. Nicholls D. G. The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem. 1974 Dec 16;50(1):305–315. doi: 10.1111/j.1432-1033.1974.tb03899.x. [DOI] [PubMed] [Google Scholar]
  24. Nobes C. D., Brown G. C., Olive P. N., Brand M. D. Non-ohmic proton conductance of the mitochondrial inner membrane in hepatocytes. J Biol Chem. 1990 Aug 5;265(22):12903–12909. [PubMed] [Google Scholar]
  25. Ogawa S., Rottenberg H., Brown T. R., Shulman R. G., Castillo C. L., Glynn P. High-resolution 31P nuclear magnetic resonance study of rat liver mitochondria. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1796–1800. doi: 10.1073/pnas.75.4.1796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Quentin E., Avéret N., Guérin B., Rigoulet M. Temperature dependence of the coupling efficiency of rat liver oxidative phosphorylation: role of adenine nucleotide translocator. Biochem Biophys Res Commun. 1994 Jul 29;202(2):816–821. doi: 10.1006/bbrc.1994.2003. [DOI] [PubMed] [Google Scholar]
  27. Rottenberg H. Phase transitions and coupling in energy transducing membranes. FEBS Lett. 1978 Oct 15;94(2):295–297. doi: 10.1016/0014-5793(78)80960-0. [DOI] [PubMed] [Google Scholar]
  28. Rottenberg H., Robertson D. E., Rubin E. The effect of temperature and chronic ethanol feeding on the proton electrochemical potential and phosphate potential in rat liver mitochondria. Biochim Biophys Acta. 1985 Aug 28;809(1):1–10. doi: 10.1016/0005-2728(85)90160-4. [DOI] [PubMed] [Google Scholar]
  29. Thayer W. S., Rubin E. Molecular alterations in the respiratory chain of rat liver after chronic ethanol consumption. J Biol Chem. 1981 Jun 25;256(12):6090–6097. [PubMed] [Google Scholar]
  30. Thiaudiere E., Gallis J. L., Dufour S., Rousse N., Canioni P. Compartmentation of inorganic phosphate in perfused rat liver. Can cytosol be distinguished from mitochondria by 31P NMR? FEBS Lett. 1993 Sep 13;330(2):231–235. doi: 10.1016/0014-5793(93)80280-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES