Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Mar 15;314(Pt 3):793–797. doi: 10.1042/bj3140793

Trace metal, acute phase and metabolic response to endotoxin in metallothionein-null mice.

A M Rofe 1, J C Philcox 1, P Coyle 1
PMCID: PMC1217126  PMID: 8615771

Abstract

Accumulation of hepatic zinc via metallothionein (MT) induction during infection/inflammation is postulated to benefit a range of metabolic processes. The metabolic consequences of two doses of endotoxin (LPS) (1 and 5 mg/kg, intraperitoneally) were examined in normal (MT+/+) and MT-null (MT-/-) mice (all results means =/- S.E.M., n=6). At 16 h after 1 mg/kg LPS, hypozincaemia was pronounced in the MT+/+ mice (4.4+/-0.2 microM), concomitant with a 36% increase in hepatic Zn and a > 10-fold increase in hepatic MT. Plasma Zn (16.6+/-0.7 microM) and total hepatic Zn were unchanged in MT -/- mice, confirming the importance of MT in altering plasma and hepatic Zn during inflammation. Plasma iron was lower in LPS-treated MT-/- mice, whereas plasma copper increased to a similar extent in both groups of mice. Plasma fibrinogen more than doubled, and was similar in both groups of mice, which questions the importance of MT in acute-phase protein synthesis. Blood and liver glucose concentrations were not significantly different between groups before or after LPS, whereas blood and liver lactate concentrations were significantly lower (31% and 24% respectively) in MT-/- mice after LPS. At 16 h after 5 mg/kg LPS, plasma Zn was decreased even further in MT+/+ mice (2.6+/-0.3 microM), but remained unchanged in MT-/- mice at concentrations significantly above those in 16-h fasted MT-/- mice (15.8+/-0.5 versus 11.3+/-0.3 microM). Total liver Zn was 17% lower than fasting values in MT-/- mice, in contrast with 32% higher in MT+/+ mice. Synthesis of MT (in MT+/+ mice) and fibrinogen in all mice was not further enhanced by the higher LPS dose. Blood glucose was significantly decreased by 18% in MT+/+ mice and by 38% in MT-/- mice after 5 mg/kg LPS. There was a marked 44% decrease in liver glucose in MT-/- mice; that in MT+/+ mice was unchanged from fasting levels, implying a deficit in hepatic gluconeogenesis in LPS-treated MT-/- mice. In the absence of any indication of major hepatotoxicity, the results of this study indicate that energy production, and not acute-phase protein synthesis, may be most influenced by Zn supply during endotoxaemia, suggesting that MT has a role in maintaining hepatic and blood glucose in this metabolic setting.

Full Text

The Full Text of this article is available as a PDF (177.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumann H., Gauldie J. Regulation of hepatic acute phase plasma protein genes by hepatocyte stimulating factors and other mediators of inflammation. Mol Biol Med. 1990 Apr;7(2):147–159. [PubMed] [Google Scholar]
  2. Brady F. O., Helvig B. S., Funk A. E., Garrett S. H. The involvement of catecholamines and polypeptide hormones in the multihormonal modulation of rat hepatic zinc thionein levels. Experientia Suppl. 1987;52:555–563. doi: 10.1007/978-3-0348-6784-9_57. [DOI] [PubMed] [Google Scholar]
  3. Brand I. A., Heinickel A. Key enzymes of carbohydrate metabolism as targets of the 11.5-kDa Zn(2+)-binding protein (parathymosin). J Biol Chem. 1991 Nov 5;266(31):20984–20989. [PubMed] [Google Scholar]
  4. Bremner I., Beattie J. H. Metallothionein and the trace minerals. Annu Rev Nutr. 1990;10:63–83. doi: 10.1146/annurev.nu.10.070190.000431. [DOI] [PubMed] [Google Scholar]
  5. Bremner I., Davies N. T. The induction of metallothionein in rat liver by zinc injection and restriction of food intake. Biochem J. 1975 Sep;149(3):733–738. doi: 10.1042/bj1490733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Christ B., Nath A., Heinrich P. C., Jungermann K. Inhibition by recombinant human interleukin-6 of the glucagon-dependent induction of phosphoenolpyruvate carboxykinase and of the insulin-dependent induction of glucokinase gene expression in cultured rat hepatocytes: regulation of gene transcription and messenger RNA degradation. Hepatology. 1994 Dec;20(6):1577–1583. doi: 10.1002/hep.1840200629. [DOI] [PubMed] [Google Scholar]
  7. Cousins R. J. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev. 1985 Apr;65(2):238–309. doi: 10.1152/physrev.1985.65.2.238. [DOI] [PubMed] [Google Scholar]
  8. Cousins R. J., Dunn M. A., Leinart A. S., Yedinak K. C., DiSilvestro R. A. Coordinate regulation of zinc metabolism and metallothionein gene expression in rats. Am J Physiol. 1986 Dec;251(6 Pt 1):E688–E694. doi: 10.1152/ajpendo.1986.251.6.E688. [DOI] [PubMed] [Google Scholar]
  9. Cousins R. J. Metal elements and gene expression. Annu Rev Nutr. 1994;14:449–469. doi: 10.1146/annurev.nu.14.070194.002313. [DOI] [PubMed] [Google Scholar]
  10. Coyle P., Philcox J. C., Rofe A. M. Corticosterone enhances the zinc and interleukin-6-mediated induction of metallothionein in cultured rat hepatocytes. J Nutr. 1993 Sep;123(9):1464–1470. doi: 10.1093/jn/123.9.1464. [DOI] [PubMed] [Google Scholar]
  11. Coyle P., Philcox J. C., Rofe A. M. Hepatic zinc in metallothionein-null mice following zinc challenge: in vivo and in vitro studies. Biochem J. 1995 Jul 1;309(Pt 1):25–31. doi: 10.1042/bj3090025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dalton T., Palmiter R. D., Andrews G. K. Transcriptional induction of the mouse metallothionein-I gene in hydrogen peroxide-treated Hepa cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elements. Nucleic Acids Res. 1994 Nov 25;22(23):5016–5023. doi: 10.1093/nar/22.23.5016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eaton D. L., Toal B. F. Evaluation of the Cd/hemoglobin affinity assay for the rapid determination of metallothionein in biological tissues. Toxicol Appl Pharmacol. 1982 Oct;66(1):134–142. doi: 10.1016/0041-008x(82)90068-0. [DOI] [PubMed] [Google Scholar]
  14. Etzel K. R., Cousins R. J. Hormonal regulation of liver metallothionein zinc: independent and synergistic action of glucagon and glucocorticoids. Proc Soc Exp Biol Med. 1981 Jun;167(2):233–236. doi: 10.3181/00379727-167-41155. [DOI] [PubMed] [Google Scholar]
  15. Fattori E., Cappelletti M., Costa P., Sellitto C., Cantoni L., Carelli M., Faggioni R., Fantuzzi G., Ghezzi P., Poli V. Defective inflammatory response in interleukin 6-deficient mice. J Exp Med. 1994 Oct 1;180(4):1243–1250. doi: 10.1084/jem.180.4.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hill M. R., Stith R. D., McCallum R. E. Interleukin 1: a regulatory role in glucocorticoid-regulated hepatic metabolism. J Immunol. 1986 Aug 1;137(3):858–862. [PubMed] [Google Scholar]
  17. Hill M., McCallum R. Altered transcriptional regulation of phosphoenolpyruvate carboxykinase in rats following endotoxin treatment. J Clin Invest. 1991 Sep;88(3):811–816. doi: 10.1172/JCI115381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kägi J. H., Kojima Y. Chemistry and biochemistry of metallothionein. Experientia Suppl. 1987;52:25–61. doi: 10.1007/978-3-0348-6784-9_3. [DOI] [PubMed] [Google Scholar]
  19. Le J. M., Vilcek J. Interleukin 6: a multifunctional cytokine regulating immune reactions and the acute phase protein response. Lab Invest. 1989 Dec;61(6):588–602. [PubMed] [Google Scholar]
  20. Leyshon-Sørland K., Mørkrid L., Rugstad H. E. Metallothionein: a protein conferring resistance in vitro to tumor necrosis factor. Cancer Res. 1993 Oct 15;53(20):4874–4880. [PubMed] [Google Scholar]
  21. Masters B. A., Kelly E. J., Quaife C. J., Brinster R. L., Palmiter R. D. Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):584–588. doi: 10.1073/pnas.91.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Michalska A. E., Choo K. H. Targeting and germ-line transmission of a null mutation at the metallothionein I and II loci in mouse. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8088–8092. doi: 10.1073/pnas.90.17.8088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Min K. S., Terano Y., Onosaka S., Tanaka K. Induction of hepatic metallothionein by nonmetallic compounds associated with acute-phase response in inflammation. Toxicol Appl Pharmacol. 1991 Oct;111(1):152–162. doi: 10.1016/0041-008x(91)90144-4. [DOI] [PubMed] [Google Scholar]
  24. Nath R., Kambadur R., Gulati S., Paliwal V. K., Sharma M. Molecular aspects, physiological function, and clinical significance of metallothioneins. Crit Rev Food Sci Nutr. 1988;27(1):41–85. doi: 10.1080/10408398809527477. [DOI] [PubMed] [Google Scholar]
  25. Pedrosa F. O., Pontremoli S., Horecker B. L. Binding of Zn2+ to rat liver fructose-1,6-bisphosphatase and its effect on the catalytic properties. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2742–2745. doi: 10.1073/pnas.74.7.2742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Philcox J. C., Coyle P., Michalska A., Choo K. H., Rofe A. M. Endotoxin-induced inflammation does not cause hepatic zinc accumulation in mice lacking metallothionein gene expression. Biochem J. 1995 Jun 1;308(Pt 2):543–546. doi: 10.1042/bj3080543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Philcox J. C., Tilley M. H., Coyle P., Rofe A. M. Metallothionein and zinc homeostasis during tumor progression. Effect of methotrexate treatment. Biol Trace Elem Res. 1994 Mar;40(3):295–308. doi: 10.1007/BF02950802. [DOI] [PubMed] [Google Scholar]
  28. Portolés M. T., Ainaga M. J., Pagani R. The induction of lipid peroxidation by E. coli lipopolysaccharide on rat hepatocytes as an important factor in the etiology of endotoxic liver damage. Biochim Biophys Acta. 1993 Nov 28;1158(3):287–292. doi: 10.1016/0304-4165(93)90027-6. [DOI] [PubMed] [Google Scholar]
  29. Richards M. P., Cousins R. J. Metallothionein and its relationship to the metabolism of dietary zinc in rats. J Nutr. 1976 Nov;106(11):1591–1599. doi: 10.1093/jn/106.11.1591. [DOI] [PubMed] [Google Scholar]
  30. Rofe A. M., Williamson D. H. Metabolic effects of vasopressin infusion in the starved rat. Reversal of ketonaemia. Biochem J. 1983 Apr 15;212(1):231–239. doi: 10.1042/bj2120231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schroeder J. J., Cousins R. J. Interleukin 6 regulates metallothionein gene expression and zinc metabolism in hepatocyte monolayer cultures. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3137–3141. doi: 10.1073/pnas.87.8.3137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Trigun S. K., Singh S. N. Evidence for tissue specific alterations in Zn2+-induced conformational changes in fructose-bisphosphatase of senescent rats. J Inorg Biochem. 1989 Apr;35(4):255–266. doi: 10.1016/0162-0134(89)84016-4. [DOI] [PubMed] [Google Scholar]
  33. Udom A. O., Brady F. O. Reactivation in vitro of zinc-requiring apo-enzymes by rat liver zinc-thionein. Biochem J. 1980 May 1;187(2):329–335. doi: 10.1042/bj1870329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. van Gool J., van Vugt H., Helle M., Aarden L. A. The relation among stress, adrenalin, interleukin 6 and acute phase proteins in the rat. Clin Immunol Immunopathol. 1990 Nov;57(2):200–210. doi: 10.1016/0090-1229(90)90034-n. [DOI] [PubMed] [Google Scholar]
  35. van der Poll T., Sauerwein H. P. Tumour necrosis factor-alpha: its role in the metabolic response to sepsis. Clin Sci (Lond) 1993 Mar;84(3):247–256. doi: 10.1042/cs0840247. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES