Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Mar 15;314(Pt 3):889–894. doi: 10.1042/bj3140889

Tyrosine phosphorylation of inducible nitric oxide synthase: implications for potential post-translational regulation.

J Pan 1, K L Burgher 1, A M Szczepanik 1, G E Ringheim 1
PMCID: PMC1217140  PMID: 8615785

Abstract

The activation of cultured Raw 264.7 murine macrophages with interferon gamma and lipopolysaccharide results in the expression of inducible nitric oxide synthase (i_NOS) and the subsequent production of nitric oxide. In the present study, the i-NOS expressed in these activated cells was characterized for possible post-translational protein modification by endogenous tyrosine protein kinases. Western-blot analysis using phosphotyrosine antibodies revealed that i-NOS was phosphorylated on tyrosine residues and that this was an early event coinciding with the appearance of newly synthesized i-NOS. A brief exposure of activated cells to vanadate, a tyrosine phosphatase inhibitor, significantly increased the level of i-NOS tyrosine phosphorylation, suggesting that tyrosine phosphatases are dynamically involved in the regulation of this process. Vanadate treatment of activated cells also resulted in a rapid increase in enzyme activity, occurring within 5 min of exposure. Taken together, these results demonstrate that tyrosine kinases and phosphatases are involved in the post-translational modification of i-NOS and may potentially play a role in modulating the functional activity of the enzyme in macrophages.

Full Text

The Full Text of this article is available as a PDF (353.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso S., Minty A., Bourlet Y., Buckingham M. Comparison of three actin-coding sequences in the mouse; evolutionary relationships between the actin genes of warm-blooded vertebrates. J Mol Evol. 1986;23(1):11–22. doi: 10.1007/BF02100994. [DOI] [PubMed] [Google Scholar]
  2. Atkinson T. P., Kaliner M. A., Hohman R. J. Phospholipase C-gamma 1 is translocated to the membrane of rat basophilic leukemia cells in response to aggregation of IgE receptors. J Immunol. 1992 Apr 1;148(7):2194–2200. [PubMed] [Google Scholar]
  3. Atkinson T. P., Lee C. W., Rhee S. G., Hohman R. J. Orthovanadate induces translocation of phospholipase C-gamma 1 and -gamma 2 in permeabilized mast cells. J Immunol. 1993 Aug 1;151(3):1448–1455. [PubMed] [Google Scholar]
  4. Bredt D. S., Ferris C. D., Snyder S. H. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J Biol Chem. 1992 Jun 5;267(16):10976–10981. [PubMed] [Google Scholar]
  5. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  6. Bredt D. S., Snyder S. H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990 Jan;87(2):682–685. doi: 10.1073/pnas.87.2.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brüne B., Lapetina E. G. Phosphorylation of nitric oxide synthase by protein kinase A. Biochem Biophys Res Commun. 1991 Dec 16;181(2):921–926. doi: 10.1016/0006-291x(91)91279-l. [DOI] [PubMed] [Google Scholar]
  8. Busse R., Mülsch A. Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett. 1990 Jun 4;265(1-2):133–136. doi: 10.1016/0014-5793(90)80902-u. [DOI] [PubMed] [Google Scholar]
  9. Chao C. C., Hu S., Molitor T. W., Shaskan E. G., Peterson P. K. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol. 1992 Oct 15;149(8):2736–2741. [PubMed] [Google Scholar]
  10. Cho H. J., Xie Q. W., Calaycay J., Mumford R. A., Swiderek K. M., Lee T. D., Nathan C. Calmodulin is a subunit of nitric oxide synthase from macrophages. J Exp Med. 1992 Aug 1;176(2):599–604. doi: 10.1084/jem.176.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cohen P., Holmes C. F., Tsukitani Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci. 1990 Mar;15(3):98–102. doi: 10.1016/0968-0004(90)90192-e. [DOI] [PubMed] [Google Scholar]
  12. Dong Z., O'Brian C. A., Fidler I. J. Activation of tumoricidal properties in macrophages by lipopolysaccharide requires protein-tyrosine kinase activity. J Leukoc Biol. 1993 Jan;53(1):53–60. doi: 10.1002/jlb.53.1.53. [DOI] [PubMed] [Google Scholar]
  13. Dong Z., Qi X., Xie K., Fidler I. J. Protein tyrosine kinase inhibitors decrease induction of nitric oxide synthase activity in lipopolysaccharide-responsive and lipopolysaccharide-nonresponsive murine macrophages. J Immunol. 1993 Sep 1;151(5):2717–2724. [PubMed] [Google Scholar]
  14. Duerksen-Hughes P. J., Day D. B., Laster S. M., Zachariades N. A., Aquino L., Gooding L. R. Both tumor necrosis factor and nitric oxide participate in lysis of simian virus 40-transformed cells by activated macrophages. J Immunol. 1992 Sep 15;149(6):2114–2122. [PubMed] [Google Scholar]
  15. Fabian R. H., Rea H. C. Neuronal toxicity by macrophages in mixed brain cell culture is augmented by antineuronal IgG and dependent upon nitric oxide synthesis. J Neuroimmunol. 1993 Apr;44(1):95–102. doi: 10.1016/0165-5728(93)90272-z. [DOI] [PubMed] [Google Scholar]
  16. Feinstein D. L., Galea E., Cermak J., Chugh P., Lyandvert L., Reis D. J. Nitric oxide synthase expression in glial cells: suppression by tyrosine kinase inhibitors. J Neurochem. 1994 Feb;62(2):811–814. doi: 10.1046/j.1471-4159.1994.62020811.x. [DOI] [PubMed] [Google Scholar]
  17. Förstermann U., Pollock J. S., Schmidt H. H., Heller M., Murad F. Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1788–1792. doi: 10.1073/pnas.88.5.1788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lamas S., Marsden P. A., Li G. K., Tempst P., Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6348–6352. doi: 10.1073/pnas.89.14.6348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lowenstein C. J., Glatt C. S., Bredt D. S., Snyder S. H. Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6711–6715. doi: 10.1073/pnas.89.15.6711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lowenstein C. J., Snyder S. H. Nitric oxide, a novel biologic messenger. Cell. 1992 Sep 4;70(5):705–707. doi: 10.1016/0092-8674(92)90301-r. [DOI] [PubMed] [Google Scholar]
  23. Lowenstein E. J., Daly R. J., Batzer A. G., Li W., Margolis B., Lammers R., Ullrich A., Skolnik E. Y., Bar-Sagi D., Schlessinger J. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell. 1992 Aug 7;70(3):431–442. doi: 10.1016/0092-8674(92)90167-b. [DOI] [PubMed] [Google Scholar]
  24. Lyons C. R., Orloff G. J., Cunningham J. M. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem. 1992 Mar 25;267(9):6370–6374. [PubMed] [Google Scholar]
  25. Margolis B., Li N., Koch A., Mohammadi M., Hurwitz D. R., Zilberstein A., Ullrich A., Pawson T., Schlessinger J. The tyrosine phosphorylated carboxyterminus of the EGF receptor is a binding site for GAP and PLC-gamma. EMBO J. 1990 Dec;9(13):4375–4380. doi: 10.1002/j.1460-2075.1990.tb07887.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Merrill J. E., Ignarro L. J., Sherman M. P., Melinek J., Lane T. E. Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol. 1993 Aug 15;151(4):2132–2141. [PubMed] [Google Scholar]
  27. Michel T., Li G. K., Busconi L. Phosphorylation and subcellular translocation of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6252–6256. doi: 10.1073/pnas.90.13.6252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nakane M., Mitchell J., Förstermann U., Murad F. Phosphorylation by calcium calmodulin-dependent protein kinase II and protein kinase C modulates the activity of nitric oxide synthase. Biochem Biophys Res Commun. 1991 Nov 14;180(3):1396–1402. doi: 10.1016/s0006-291x(05)81351-8. [DOI] [PubMed] [Google Scholar]
  29. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  30. Recalde H. R. A simple method of obtaining monocytes in suspension. J Immunol Methods. 1984 Apr 13;69(1):71–77. doi: 10.1016/0022-1759(84)90278-3. [DOI] [PubMed] [Google Scholar]
  31. Ringheim G. E., Pan J. Particulate and soluble forms of the inducible nitric oxide synthase are distinguishable at the amino terminus in RAW 264.7 macrophage cells. Biochem Biophys Res Commun. 1995 May 25;210(3):711–716. doi: 10.1006/bbrc.1995.1717. [DOI] [PubMed] [Google Scholar]
  32. Schmidt H. H., Warner T. D., Nakane M., Förstermann U., Murad F. Regulation and subcellular location of nitrogen oxide synthases in RAW264.7 macrophages. Mol Pharmacol. 1992 Apr;41(4):615–624. [PubMed] [Google Scholar]
  33. Severn A., Wakelam M. J., Liew F. Y. The role of protein kinase C in the induction of nitric oxide synthesis by murine macrophages. Biochem Biophys Res Commun. 1992 Nov 16;188(3):997–1002. doi: 10.1016/0006-291x(92)91330-s. [DOI] [PubMed] [Google Scholar]
  34. Weisz A., Oguchi S., Cicatiello L., Esumi H. Dual mechanism for the control of inducible-type NO synthase gene expression in macrophages during activation by interferon-gamma and bacterial lipopolysaccharide. Transcriptional and post-transcriptional regulation. J Biol Chem. 1994 Mar 18;269(11):8324–8333. [PubMed] [Google Scholar]
  35. Welsh N. A role for tyrosine kinase activation in interleukin-1 beta induced nitric oxide production in the insulin producing cell line RINm-5F. Biosci Rep. 1994 Feb;14(1):43–50. doi: 10.1007/BF01901637. [DOI] [PubMed] [Google Scholar]
  36. Wolff D. J., Datto G. A. Identification and characterization of a calmodulin-dependent nitric oxide synthase from GH3 pituitary cells. Biochem J. 1992 Jul 1;285(Pt 1):201–206. doi: 10.1042/bj2850201. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES