Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Mar 15;314(Pt 3):943–949. doi: 10.1042/bj3140943

Mutations of recombinant rat liver fatty acid-binding protein at residues 102 and 122 alter its structural integrity and affinity for physiological ligands.

A E Thumser 1, J Voysey 1, D C Wilton 1
PMCID: PMC1217148  PMID: 8615793

Abstract

Rat liver fatty acid-binding protein (FABP) is able to accommodate a wide range of non-polar anions in addition to long-chain fatty acids. This property means that the liver protein is functionally different from other FABPs from intestine, muscle and adipose tissue that have a more restricted ligand specificity and stoichiometry. The availability of crystal structures for the latter proteins has highlighted the importance of two arginine residues that are involved in the binding of the fatty acid carboxylate. Only one of these arginine residues, arginine-122, is conserved in liver FABP, whereas the other arginine, at position 102, is replaced by a threonine. In order to gain further insight into the nature of ligand interactions with liver FABP these key residues (102 and 122) have been changed by site-directed mutagenesis. The results with an R122Q mutant highlight the critical role of this arginine in determining ligand affinity, while similar but less dramatic effects were observed with the T102Q mutant. The double mutant T102Q/R122Q was expressed but had lost the ability to bind fluorescent ligands. It is concluded that Arg-122 plays a role in accommodating the carboxylate group of at least one fatty acid. It is proposed that physiological ligands with more bulky headgroups, such as lysophospholipids, acyl-CoA and mono-olein, bind with the headgroups in a solvent-exposed location near the portal region of the protein. The portal region is suggested to be more flexible in the mutants (R122Q and to a lesser extent T102Q). The net result is that the ligand specificity of the R122Q mutant changes to that of a protein with enhanced affinity for acyl-CoA, lysophospholipids and mono-olein.

Full Text

The Full Text of this article is available as a PDF (443.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Burrier R. E., Brecher P. Binding of lysophosphatidylcholine to the rat liver fatty acid binding protein. Biochim Biophys Acta. 1986 Nov 14;879(2):229–239. doi: 10.1016/0005-2760(86)90107-4. [DOI] [PubMed] [Google Scholar]
  3. Burrier R. E., Manson C. R., Brecher P. Binding of acyl-CoA to liver fatty acid binding protein: effect on acyl-CoA synthesis. Biochim Biophys Acta. 1987 Jun 23;919(3):221–230. doi: 10.1016/0005-2760(87)90261-x. [DOI] [PubMed] [Google Scholar]
  4. Cistola D. P., Sacchettini J. C., Banaszak L. J., Walsh M. T., Gordon J. I. Fatty acid interactions with rat intestinal and liver fatty acid-binding proteins expressed in Escherichia coli. A comparative 13C NMR study. J Biol Chem. 1989 Feb 15;264(5):2700–2710. [PubMed] [Google Scholar]
  5. Cistola D. P., Small D. M., Hamilton J. A. Ionization behavior of aqueous short-chain carboxylic acids: a carbon-13 NMR study. J Lipid Res. 1982 Jul;23(5):795–799. [PubMed] [Google Scholar]
  6. Cistola D. P., Walsh M. T., Corey R. P., Hamilton J. A., Brecher P. Interactions of oleic acid with liver fatty acid binding protein: a carbon-13 NMR study. Biochemistry. 1988 Jan 26;27(2):711–717. doi: 10.1021/bi00402a033. [DOI] [PubMed] [Google Scholar]
  7. Glatz J. F., Veerkamp J. H. A radiochemical procedure for the assay of fatty acid binding by proteins. Anal Biochem. 1983 Jul 1;132(1):89–95. doi: 10.1016/0003-2697(83)90429-3. [DOI] [PubMed] [Google Scholar]
  8. Haunerland N., Jagschies G., Schulenberg H., Spener F. Fatty-acid-binding proteins. Occurrence of two fatty-acid-binding proteins in bovine liver cytosol and their binding of fatty acids, cholesterol, and other lipophilic ligands. Hoppe Seylers Z Physiol Chem. 1984 Mar;365(3):365–376. doi: 10.1515/bchm2.1984.365.1.365. [DOI] [PubMed] [Google Scholar]
  9. Jakoby M. G., Miller K. R., Toner J. J., Bauman A., Cheng L., Li E., Cistola D. P. Ligand-protein electrostatic interactions govern the specificity of retinol- and fatty acid-binding proteins. Biochemistry. 1993 Jan 26;32(3):872–878. doi: 10.1021/bi00054a019. [DOI] [PubMed] [Google Scholar]
  10. Kaikaus R. M., Bass N. M., Ockner R. K. Functions of fatty acid binding proteins. Experientia. 1990 Jun 15;46(6):617–630. doi: 10.1007/BF01939701. [DOI] [PubMed] [Google Scholar]
  11. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  12. LaLonde J. M., Levenson M. A., Roe J. J., Bernlohr D. A., Banaszak L. J. Adipocyte lipid-binding protein complexed with arachidonic acid. Titration calorimetry and X-ray crystallographic studies. J Biol Chem. 1994 Oct 14;269(41):25339–25347. doi: 10.2210/pdb1adl/pdb. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lowe J. B., Sacchettini J. C., Laposata M., McQuillan J. J., Gordon J. I. Expression of rat intestinal fatty acid-binding protein in Escherichia coli. Purification and comparison of ligand binding characteristics with that of Escherichia coli-derived rat liver fatty acid-binding protein. J Biol Chem. 1987 Apr 25;262(12):5931–5937. [PubMed] [Google Scholar]
  15. Miller K. R., Cistola D. P. Titration calorimetry as a binding assay for lipid-binding proteins. Mol Cell Biochem. 1993 Jun 9;123(1-2):29–37. doi: 10.1007/BF01076472. [DOI] [PubMed] [Google Scholar]
  16. Muga A., Cistola D. P., Mantsch H. H. A comparative study of the conformational properties of Escherichia coli-derived rat intestinal and liver fatty acid binding proteins. Biochim Biophys Acta. 1993 Mar 26;1162(3):291–296. doi: 10.1016/0167-4838(93)90293-z. [DOI] [PubMed] [Google Scholar]
  17. Nemecz G., Jefferson J. R., Schroeder F. Polyene fatty acid interactions with recombinant intestinal and liver fatty acid-binding proteins. Spectroscopic studies. J Biol Chem. 1991 Sep 15;266(26):17112–17123. [PubMed] [Google Scholar]
  18. Peeters R. A., in 't Groen M. A., de Moel M. P., van Moerkerk H. T., Veerkamp J. H. The binding affinity of fatty acid-binding proteins from human, pig and rat liver for different fluorescent fatty acids and other ligands. Int J Biochem. 1989;21(4):407–418. doi: 10.1016/0020-711x(89)90365-0. [DOI] [PubMed] [Google Scholar]
  19. Richieri G. V., Kleinfeld A. M. Continuous measurement of phospholipase A2 activity using the fluorescent probe ADIFAB. Anal Biochem. 1995 Aug 10;229(2):256–263. doi: 10.1006/abio.1995.1410. [DOI] [PubMed] [Google Scholar]
  20. Sacchettini J. C., Gordon J. I. Rat intestinal fatty acid binding protein. A model system for analyzing the forces that can bind fatty acids to proteins. J Biol Chem. 1993 Sep 5;268(25):18399–18402. [PubMed] [Google Scholar]
  21. Sacchettini J. C., Hauft S. M., Van Camp S. L., Cistola D. P., Gordon J. I. Developmental and structural studies of an intracellular lipid binding protein expressed in the ileal epithelium. J Biol Chem. 1990 Nov 5;265(31):19199–19207. [PubMed] [Google Scholar]
  22. Sha R. S., Kane C. D., Xu Z., Banaszak L. J., Bernlohr D. A. Modulation of ligand binding affinity of the adipocyte lipid-binding protein by selective mutation. Analysis in vitro and in situ. J Biol Chem. 1993 Apr 15;268(11):7885–7892. [PubMed] [Google Scholar]
  23. Sheridan M., Wilton D. C. The binding of the fluorescent ATP analogue 2'(3')-trinitrophenyladenosine-5'-triphosphate to rat liver fatty acid-binding protein. FEBS Lett. 1992 Dec 21;314(3):486–488. doi: 10.1016/0014-5793(92)81532-q. [DOI] [PubMed] [Google Scholar]
  24. Sorof S. Modulation of mitogenesis by liver fatty acid binding protein. Cancer Metastasis Rev. 1994 Dec;13(3-4):317–336. doi: 10.1007/BF00666102. [DOI] [PubMed] [Google Scholar]
  25. Storch J. Diversity of fatty acid-binding protein structure and function: studies with fluorescent ligands. Mol Cell Biochem. 1993 Jun 9;123(1-2):45–53. doi: 10.1007/BF01076474. [DOI] [PubMed] [Google Scholar]
  26. Sweetser D. A., Heuckeroth R. O., Gordon J. I. The metabolic significance of mammalian fatty-acid-binding proteins: abundant proteins in search of a function. Annu Rev Nutr. 1987;7:337–359. doi: 10.1146/annurev.nu.07.070187.002005. [DOI] [PubMed] [Google Scholar]
  27. Thumser A. E., Evans C., Worrall A. F., Wilton D. C. Effect on ligand binding of arginine mutations in recombinant rat liver fatty acid-binding protein. Biochem J. 1994 Jan 1;297(Pt 1):103–107. doi: 10.1042/bj2970103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thumser A. E., Voysey J. E., Wilton D. C. The binding of lysophospholipids to rat liver fatty acid-binding protein and albumin. Biochem J. 1994 Aug 1;301(Pt 3):801–806. doi: 10.1042/bj3010801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thumser A. E., Wilton D. C. Characterization of binding and structural properties of rat liver fatty-acid-binding protein using tryptophan mutants. Biochem J. 1994 Jun 15;300(Pt 3):827–833. doi: 10.1042/bj3000827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thumser A. E., Wilton D. C. The binding of natural and fluorescent lysophospholipids to wild-type and mutant rat liver fatty acid-binding protein and albumin. Biochem J. 1995 Apr 1;307(Pt 1):305–311. doi: 10.1042/bj3070305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Veerkamp J. H., Peeters R. A., Maatman R. G. Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. Biochim Biophys Acta. 1991 Jan 4;1081(1):1–24. doi: 10.1016/0005-2760(91)90244-c. [DOI] [PubMed] [Google Scholar]
  32. Wilkinson T. C., Wilton D. C. Studies on fatty acid-binding proteins. The binding properties of rat liver fatty acid-binding protein. Biochem J. 1987 Oct 15;247(2):485–488. doi: 10.1042/bj2470485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wilkinson T. C., Wilton D. C. Studies on fatty acid-binding proteins. The detection and quantification of the protein from rat liver by using a fluorescent fatty acid analogue. Biochem J. 1986 Sep 1;238(2):419–424. doi: 10.1042/bj2380419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wilton D. C. Studies on fatty-acid-binding proteins. The purification of rat liver fatty-acid-binding protein and the role of cysteine-69 in fatty acid binding. Biochem J. 1989 Jul 1;261(1):273–276. doi: 10.1042/bj2610273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Worrall A. F., Evans C., Wilton D. C. Synthesis of a gene for rat liver fatty-acid-binding protein and its expression in Escherichia coli. Biochem J. 1991 Sep 1;278(Pt 2):365–368. doi: 10.1042/bj2780365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Xu Z., Bernlohr D. A., Banaszak L. J. The adipocyte lipid-binding protein at 1.6-A resolution. Crystal structures of the apoprotein and with bound saturated and unsaturated fatty acids. J Biol Chem. 1993 Apr 15;268(11):7874–7884. [PubMed] [Google Scholar]
  37. Zanotti G., Scapin G., Spadon P., Veerkamp J. H., Sacchettini J. C. Three-dimensional structure of recombinant human muscle fatty acid-binding protein. J Biol Chem. 1992 Sep 15;267(26):18541–18550. doi: 10.2210/pdb2hmb/pdb. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES