Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Mar 15;314(Pt 3):985–991. doi: 10.1042/bj3140985

Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding.

S Adak 1, A Mazumder 1, R K Banerjee 1
PMCID: PMC1217153  PMID: 8615798

Abstract

The plausible role of arginine and tyrosine residues at the active side of horseradish peroxidase (HRP) in aromatic donor (guaiacol) oxidation was probed by chemical modification followed by characterization of the modified enzyme. The arginine-specific reagents phenylglyoxal (PGO), 2,3-butanedione and 1,2-cyclohexanedione all inactivated the enzyme, following pseudo-first-order kinetics with second-order rate contents of 24M(-1.)min(-1), 0.8M(-1.)min(-1) and 0.54M(-1.)min(-1) respectively. Modification with tetranitromethane, a tyrosine-specific reagent, also resulted in 50% loss of activity following pseudo-first-order kinetics with a second-order rate constant of 2.0M(-1.)min(-1). The substrate, H2O2, and electron donors such as I- and SCN- offered no protection against inactivation by both types of modifier, whereas the enzyme was completely protected by guaiacol or o-dianisidine, an aromatic electron donor (second substrate) oxidized by the enzyme. These studies indicate the involvement or arginine and tyrosine residues at the aromatic donor site of HRP. The guaiacol-protected phenylglyoxal-modified enzyme showed almost the same binding parameter (Kd) as the native enzyme, and a similar free energy change (deltaG')for the binding of the donor. Stoicheiometric studies with [7-14C]phenylglyoxal showed incorporation of 2 mol of phenylglyoxal per mol of enzyme, indicating modification of one arginine residue for complete activation. The difference absorption spectrum of the tetranitromethane-modified against the native enzyme showed a peak at 428 nm, characteristic of the nitrotyrosyl residue, that was abolished by treatment with sodium dithionite, indicating specific modification of a tyrosine residue. Inactivation stoicheiometry showed that modification of one tyrosine residue per enzyme caused 50% inactivation. Binding studies by optical difference spectroscopy indicated that the arginine-modified enzyme could not bind guaiacol at all, whereas the tyrosine-modified enzyme bound it with reduced affinity (Kd 35mM compared with 10mM for the native enzyme). Both the modified enzymes, however, retained the property of the formation of compound II (one-electron oxidation state higher than native ferriperoxidase) with H2O2, but reduction of compound II to native enzyme by guaiacol did not occur in the PGO-modified enzyme, owing to lack of binding. No non-specific change in protein structure due to modification was evident from circular dichromism studies. We therefore suggest that the active site of HRP for aromatic donor oxidation is composed of an arginine and an adjacent tyrosine residue, of which the former plays an obligatory role in aromatic donor binding whereas the latter residue plays a facilitatory role, presumably by hydrophobic interaction or hydrogen bonding.

Full Text

The Full Text of this article is available as a PDF (539.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adak S., Bhattacharyya D. K., Mazumder A., Bandyopadhyay U., Banerjee R. K. Concurrent reduction of iodine and oxidation of EDTA at the active site of horseradish peroxidase: probing the iodine binding site by optical difference spectroscopy and steady state kinetic analysis for the formation of active enzyme-I(+)-EDTA ternary complex for iodine reductase activity. Biochemistry. 1995 Oct 10;34(40):12998–13006. doi: 10.1021/bi00040a010. [DOI] [PubMed] [Google Scholar]
  2. Ator M. A., Ortiz de Montellano P. R. Protein control of prosthetic heme reactivity. Reaction of substrates with the heme edge of horseradish peroxidase. J Biol Chem. 1987 Feb 5;262(4):1542–1551. [PubMed] [Google Scholar]
  3. Banci L., Carloni P., Savellini G. G. Molecular dynamics studies on peroxidases: a structural model for horseradish peroxidase and a substrate adduct. Biochemistry. 1994 Oct 18;33(41):12356–12366. doi: 10.1021/bi00207a002. [DOI] [PubMed] [Google Scholar]
  4. Bhattacharyya D. K., Adak S., Bandyopadhyay U., Banerjee R. K. Mechanism of inhibition of horseradish peroxidase-catalysed iodide oxidation by EDTA. Biochem J. 1994 Mar 1;298(Pt 2):281–288. doi: 10.1042/bj2980281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhattacharyya D. K., Bandyopadhyay U., Banerjee R. K. Chemical and kinetic evidence for an essential histidine in horseradish peroxidase for iodide oxidation. J Biol Chem. 1992 May 15;267(14):9800–9804. [PubMed] [Google Scholar]
  6. Bhattacharyya D. K., Bandyopadhyay U., Banerjee R. K. Chemical and kinetic evidence for an essential histidine residue in the electron transfer from aromatic donor to horseradish peroxidase compound I. J Biol Chem. 1993 Oct 25;268(30):22292–22298. [PubMed] [Google Scholar]
  7. Bosshard H. R., Bänziger J., Hasler T., Poulos T. L. The cytochrome c peroxidase-cytochrome c electron transfer complex. The role of histidine residues. J Biol Chem. 1984 May 10;259(9):5683–5690. [PubMed] [Google Scholar]
  8. Campese D., Lombardo D., Multigner L., Lafont H., De Caro A. Implication of a tyrosine residue in the unspecific bile salt binding site of human pancreatic carboxylic ester hydrolase. Biochim Biophys Acta. 1984 Jan 31;784(2-3):147–157. doi: 10.1016/0167-4838(84)90121-3. [DOI] [PubMed] [Google Scholar]
  9. Cheng K. C., Nowak T. Arginine residues at the active site of avian liver phosphoenolpyruvate carboxykinase. J Biol Chem. 1989 Feb 25;264(6):3317–3324. [PubMed] [Google Scholar]
  10. Critchlow J. E., Dunford H. B. Studies on horseradish peroxidase. IX. Kinetics of the oxidation of p-cresol by compound II. J Biol Chem. 1972 Jun 25;247(12):3703–3713. [PubMed] [Google Scholar]
  11. De S. K., Banerjee R. K. Purification, characterization and origin of rat gastric peroxidase. Eur J Biochem. 1986 Oct 15;160(2):319–325. doi: 10.1111/j.1432-1033.1986.tb09974.x. [DOI] [PubMed] [Google Scholar]
  12. Dolphin D., Forman A., Borg D. C., Fajer J., Felton R. H. Compounds I of catalase and horse radish peroxidase: pi-cation radicals. Proc Natl Acad Sci U S A. 1971 Mar;68(3):614–618. doi: 10.1073/pnas.68.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Erman J. E., Vitello L. B., Miller M. A., Shaw A., Brown K. A., Kraut J. Histidine 52 is a critical residue for rapid formation of cytochrome c peroxidase compound I. Biochemistry. 1993 Sep 21;32(37):9798–9806. doi: 10.1021/bi00088a035. [DOI] [PubMed] [Google Scholar]
  14. Gadda G., Negri A., Pilone M. S. Reaction of phenylglyoxal with arginine groups in D-amino-acid oxidase from Rhodotorula gracilis. J Biol Chem. 1994 Jul 8;269(27):17809–17814. [PubMed] [Google Scholar]
  15. Harris R. Z., Newmyer S. L., Ortiz de Montellano P. R. Horseradish peroxidase-catalyzed two-electron oxidations. Oxidation of iodide, thioanisoles, and phenols at distinct sites. J Biol Chem. 1993 Jan 25;268(3):1637–1645. [PubMed] [Google Scholar]
  16. Henriksen A., Gajhede M., Baker P., Smith A. T., Burke J. F. Crystallization and preliminary X-ray studies of recombinant horseradish peroxidase. Acta Crystallogr D Biol Crystallogr. 1995 Jan 1;51(Pt 1):121–123. doi: 10.1107/S0907444994008723. [DOI] [PubMed] [Google Scholar]
  17. Hosoya T., Sakurada J., Kurokawa C., Toyoda R., Nakamura S. Interaction of aromatic donor molecules with lactoperoxidase probed by optical difference spectra. Biochemistry. 1989 Mar 21;28(6):2639–2644. doi: 10.1021/bi00432a042. [DOI] [PubMed] [Google Scholar]
  18. KEILIN D., HARTREE E. F. Purification of horse-radish peroxidase and comparison of its properties with those of catalase and methaemoglobin. Biochem J. 1951 Jun;49(1):88–104. doi: 10.1042/bj0490088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kochhar S., Hunziker P. E., Leong-Morgenthaler P., Hottinger H. Primary structure, physicochemical properties, and chemical modification of NAD(+)-dependent D-lactate dehydrogenase. Evidence for the presence of Arg-235, His-303, Tyr-101, and Trp-19 at or near the active site. J Biol Chem. 1992 Apr 25;267(12):8499–8513. [PubMed] [Google Scholar]
  20. LEVY H. M., LEBER P. D., RYAN E. M. INACTIVATION OF MYOSIN BY 2,4-DINITROPHENOL AND PROTECTION BY ADENOSINE TRIPHOSPHATE AND OTHER PHOSPHATE COMPOUNDS. J Biol Chem. 1963 Nov;238:3654–3659. [PubMed] [Google Scholar]
  21. La Mar G. N., Hernández G., de Ropp J. S. H NMR investigation of the influence of interacting sites on the dynamics and thermodynamics of substrate and ligand binding to horseradish peroxidase. Biochemistry. 1992 Sep 29;31(38):9158–9168. doi: 10.1021/bi00153a007. [DOI] [PubMed] [Google Scholar]
  22. Leigh J. S., Maltempo M. M., Ohlsson P. I., Paul K. G. Optical, NMR and EPR properties of horseradish peroxidase and its donor complexes. FEBS Lett. 1975 Mar 1;51(1):304–308. doi: 10.1016/0014-5793(75)80913-6. [DOI] [PubMed] [Google Scholar]
  23. Modi S., Behere D. V., Mitra S. Interaction of thiocyanate with horseradish peroxidase. 1H and 15N nuclear magnetic resonance studies. J Biol Chem. 1989 Nov 25;264(33):19677–19684. [PubMed] [Google Scholar]
  24. Morishima I., Ogawa S. Proton nuclear magnetic resonance spectra of compounds I and II of horseradish peroxidase. Biochemistry. 1978 Oct 17;17(21):4384–4388. doi: 10.1021/bi00614a005. [DOI] [PubMed] [Google Scholar]
  25. Morrison M., Schonbaum G. R. Peroxidase-catalyzed halogenation. Annu Rev Biochem. 1976;45:861–888. doi: 10.1146/annurev.bi.45.070176.004241. [DOI] [PubMed] [Google Scholar]
  26. Oertling W. A., Babcock G. T. Time-resolved and static resonance Raman spectroscopy of horseradish peroxidase intermediates. Biochemistry. 1988 May 3;27(9):3331–3338. doi: 10.1021/bi00409a032. [DOI] [PubMed] [Google Scholar]
  27. Paul K. G., Ohlsson P. I. Equilibria between horseradish peroxidase and aromatic donors. Acta Chem Scand B. 1978;32(6):395–404. doi: 10.3891/acta.chem.scand.32b-0395. [DOI] [PubMed] [Google Scholar]
  28. Poulos T. L., Kraut J. A hypothetical model of the cytochrome c peroxidase . cytochrome c electron transfer complex. J Biol Chem. 1980 Nov 10;255(21):10322–10330. [PubMed] [Google Scholar]
  29. Riordan J. F., Christen P. Reaction of tetranitromethane with protein sulfhydryl groups. Inactivation of aldolase. Biochemistry. 1968 Apr;7(4):1525–1530. doi: 10.1021/bi00844a040. [DOI] [PubMed] [Google Scholar]
  30. Sakurada J., Takahashi S., Hosoya T. Nuclear magnetic resonance studies on the spatial relationship of aromatic donor molecules to the heme iron of horseradish peroxidase. J Biol Chem. 1986 Jul 25;261(21):9657–9662. [PubMed] [Google Scholar]
  31. Sakurada J., Takahashi S., Hosoya T. Proton nuclear magnetic resonance studies on the iodide binding by horseradish peroxidase. J Biol Chem. 1987 Mar 25;262(9):4007–4010. [PubMed] [Google Scholar]
  32. Schejter A., Lanir A., Epstein N. Binding of hydrogen donors to horseradish peroxidase: a spectroscopic study. Arch Biochem Biophys. 1976 May;174(1):36–44. doi: 10.1016/0003-9861(76)90321-0. [DOI] [PubMed] [Google Scholar]
  33. Schonbaum G. R. New complexes of peroxidases with hydroxamic acids, hydrazides, and amides. J Biol Chem. 1973 Jan 25;248(2):502–511. [PubMed] [Google Scholar]
  34. Smith A. T., Sanders S. A., Thorneley R. N., Burke J. F., Bray R. R. Characterisation of a haem active-site mutant of horseradish peroxidase, Phe41----Val, with altered reactivity towards hydrogen peroxide and reducing substrates. Eur J Biochem. 1992 Jul 15;207(2):507–519. doi: 10.1111/j.1432-1033.1992.tb17077.x. [DOI] [PubMed] [Google Scholar]
  35. Smith A. T., Santama N., Dacey S., Edwards M., Bray R. C., Thorneley R. N., Burke J. F. Expression of a synthetic gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca2+ and heme. J Biol Chem. 1990 Aug 5;265(22):13335–13343. [PubMed] [Google Scholar]
  36. Smulevich G., Paoli M., Burke J. F., Sanders S. A., Thorneley R. N., Smith A. T. Characterization of recombinant horseradish peroxidase C and three site-directed mutants, F41V, F41W, and R38K, by resonance Raman spectroscopy. Biochemistry. 1994 Jun 14;33(23):7398–7407. doi: 10.1021/bi00189a046. [DOI] [PubMed] [Google Scholar]
  37. Sokolovsky M., Riordan J. F., Vallee B. L. Tetranitromethane. A reagent for the nitration of tyrosyl residues in proteins. Biochemistry. 1966 Nov;5(11):3582–3589. doi: 10.1021/bi00875a029. [DOI] [PubMed] [Google Scholar]
  38. Strickland E. H., Kay E., Shannon L. M., Horwitz J. Peroxidase isoenzymes from horseradish roots. 3. Circular dichroism of isoenzymes and apoisoenzymes. J Biol Chem. 1968 Jul 10;243(13):3560–3565. [PubMed] [Google Scholar]
  39. Takahashi K. The reaction of phenylglyoxal with arginine residues in proteins. J Biol Chem. 1968 Dec 10;243(23):6171–6179. [PubMed] [Google Scholar]
  40. Veitch N. C., Williams R. J. Two-dimensional 1H-NMR studies of horseradish peroxidase C and its interaction with indole-3-propionic acid. Eur J Biochem. 1990 Apr 30;189(2):351–362. doi: 10.1111/j.1432-1033.1990.tb15496.x. [DOI] [PubMed] [Google Scholar]
  41. Vitello L. B., Erman J. E., Miller M. A., Wang J., Kraut J. Effect of arginine-48 replacement on the reaction between cytochrome c peroxidase and hydrogen peroxide. Biochemistry. 1993 Sep 21;32(37):9807–9818. doi: 10.1021/bi00088a036. [DOI] [PubMed] [Google Scholar]
  42. Welinder K. G. Amino acid sequence studies of horseradish peroxidase. Amino and carboxyl termini, cyanogen bromide and tryptic fragments, the complete sequence, and some structural characteristics of horseradish peroxidase C. Eur J Biochem. 1979 Jun 1;96(3):483–502. doi: 10.1111/j.1432-1033.1979.tb13061.x. [DOI] [PubMed] [Google Scholar]
  43. Welinder K. G. Plant peroxidases. Their primary, secondary and tertiary structures, and relation to cytochrome c peroxidase. Eur J Biochem. 1985 Sep 16;151(3):497–504. doi: 10.1111/j.1432-1033.1985.tb09129.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES