Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Apr 1;315(Pt 1):161–170. doi: 10.1042/bj3150161

Interactions of integrin GPIIb/IIIa-derived peptides with fibrinogen investigated by NMR spectroscopy.

L J Yao 1, K H Mayo 1
PMCID: PMC1217166  PMID: 8670102

Abstract

Three peptides derived from platelet receptor glycoprotein alphaIIbBeta3 (GPIIb/IIIa) have been identified recently as fibrinogen-binding sequences: GPIIb 300-314 and 656-667 and GPIIIa 211-223. NMR spectroscopy has been used here to investigate the interactions of these peptides with parent fibrinogen. Based on resonance broadening and chemical-shift changes of peptides in the presence and absence of fibrinogen, interactions in the fast ligand-exchange regime are apparent and interfacial residues can be proposed. Positively charged arginines and histidines, along with several hydrophobic residues, are implicated as being crucial to the binding process. Transferred nuclear Overhauser effects and distance geometry calculations allow discussion of probable conformations in peptide-'bound' states. These identifications are consistent with other biological/chemical data and provide the basis for further studies aimed at understanding fibrinogen-mediated platelet aggregation on the molecular level.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argraves W. S., Suzuki S., Arai H., Thompson K., Pierschbacher M. D., Ruoslahti E. Amino acid sequence of the human fibronectin receptor. J Cell Biol. 1987 Sep;105(3):1183–1190. doi: 10.1083/jcb.105.3.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bajt M. L., Ginsberg M. H., Frelinger A. L., 3rd, Berndt M. C., Loftus J. C. A spontaneous mutation of integrin alpha IIb beta 3 (platelet glycoprotein IIb-IIIa) helps define a ligand binding site. J Biol Chem. 1992 Feb 25;267(6):3789–3794. [PubMed] [Google Scholar]
  3. Bennett J. S., Hoxie J. A., Leitman S. F., Vilaire G., Cines D. B. Inhibition of fibrinogen binding to stimulated human platelets by a monoclonal antibody. Proc Natl Acad Sci U S A. 1983 May;80(9):2417–2421. doi: 10.1073/pnas.80.9.2417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braun W., Go N. Calculation of protein conformations by proton-proton distance constraints. A new efficient algorithm. J Mol Biol. 1985 Dec 5;186(3):611–626. doi: 10.1016/0022-2836(85)90134-2. [DOI] [PubMed] [Google Scholar]
  5. Calvete J. J., Arias J., Alvarez M. V., Lopez M. M., Henschen A., Gonzalez-Rodriguez J. Further studies on the topography of human platelet glycoprotein IIb. Localization of monoclonal antibody epitopes and the putative glycoprotein IIa- and fibrinogen-binding regions. Biochem J. 1991 Feb 1;273(Pt 3):767–775. doi: 10.1042/bj2730767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Calvete J. J., Mann K., Alvarez M. V., López M. M., González-Rodríguez J. Proteolytic dissection of the isolated platelet fibrinogen receptor, integrin GPIIb/IIIa. Localization of GPIIb and GPIIIa sequences putatively involved in the subunit interface and in intrasubunit and intrachain contacts. Biochem J. 1992 Mar 1;282(Pt 2):523–532. doi: 10.1042/bj2820523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Campbell A. P., Sykes B. D. The two-dimensional transferred nuclear Overhauser effect: theory and practice. Annu Rev Biophys Biomol Struct. 1993;22:99–122. doi: 10.1146/annurev.bb.22.060193.000531. [DOI] [PubMed] [Google Scholar]
  8. Charo I. F., Nannizzi L., Phillips D. R., Hsu M. A., Scarborough R. M. Inhibition of fibrinogen binding to GP IIb-IIIa by a GP IIIa peptide. J Biol Chem. 1991 Jan 25;266(3):1415–1421. [PubMed] [Google Scholar]
  9. Chelberg M. K., McCarthy J. B., Skubitz A. P., Furcht L. T., Tsilibary E. C. Characterization of a synthetic peptide from type IV collagen that promotes melanoma cell adhesion, spreading, and motility. J Cell Biol. 1990 Jul;111(1):261–270. doi: 10.1083/jcb.111.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cook J. J., Trybulec M., Lasz E. C., Khan S., Niewiarowski S. Binding of glycoprotein IIIa-derived peptide 217-231 to fibrinogen and von Willebrand factors and its inhibition by platelet glycoprotein IIb/IIIa complex. Biochim Biophys Acta. 1992 Mar 12;1119(3):312–321. doi: 10.1016/0167-4838(92)90219-4. [DOI] [PubMed] [Google Scholar]
  11. D'Souza S. E., Ginsberg M. H., Burke T. A., Lam S. C., Plow E. F. Localization of an Arg-Gly-Asp recognition site within an integrin adhesion receptor. Science. 1988 Oct 7;242(4875):91–93. doi: 10.1126/science.3262922. [DOI] [PubMed] [Google Scholar]
  12. D'Souza S. E., Ginsberg M. H., Burke T. A., Plow E. F. The ligand binding site of the platelet integrin receptor GPIIb-IIIa is proximal to the second calcium binding domain of its alpha subunit. J Biol Chem. 1990 Feb 25;265(6):3440–3446. [PubMed] [Google Scholar]
  13. D'Souza S. E., Ginsberg M. H., Matsueda G. R., Plow E. F. A discrete sequence in a platelet integrin is involved in ligand recognition. Nature. 1991 Mar 7;350(6313):66–68. doi: 10.1038/350066a0. [DOI] [PubMed] [Google Scholar]
  14. Davie E. W., Fujikawa K., Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 1991 Oct 29;30(43):10363–10370. doi: 10.1021/bi00107a001. [DOI] [PubMed] [Google Scholar]
  15. Farrell D. H., Thiagarajan P., Chung D. W., Davie E. W. Role of fibrinogen alpha and gamma chain sites in platelet aggregation. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10729–10732. doi: 10.1073/pnas.89.22.10729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fitzgerald L. A., Poncz M., Steiner B., Rall S. C., Jr, Bennett J. S., Phillips D. R. Comparison of cDNA-derived protein sequences of the human fibronectin and vitronectin receptor alpha-subunits and platelet glycoprotein IIb. Biochemistry. 1987 Dec 15;26(25):8158–8165. doi: 10.1021/bi00399a021. [DOI] [PubMed] [Google Scholar]
  17. Gartner T. K., Taylor D. B. The amino acid sequence Gly-Ala-Pro-Leu appears to be a fibrinogen binding site in the platelet integrin, glycoprotein IIb. Thromb Res. 1990 Nov 15;60(4):291–309. doi: 10.1016/0049-3848(90)90108-o. [DOI] [PubMed] [Google Scholar]
  18. Gehlsen K. R., Dillner L., Engvall E., Ruoslahti E. The human laminin receptor is a member of the integrin family of cell adhesion receptors. Science. 1988 Sep 2;241(4870):1228–1229. doi: 10.1126/science.2970671. [DOI] [PubMed] [Google Scholar]
  19. Hemler M. E. VLA proteins in the integrin family: structures, functions, and their role on leukocytes. Annu Rev Immunol. 1990;8:365–400. doi: 10.1146/annurev.iy.08.040190.002053. [DOI] [PubMed] [Google Scholar]
  20. Herbst T. J., McCarthy J. B., Tsilibary E. C., Furcht L. T. Differential effects of laminin, intact type IV collagen, and specific domains of type IV collagen on endothelial cell adhesion and migration. J Cell Biol. 1988 Apr;106(4):1365–1373. doi: 10.1083/jcb.106.4.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hynes R. O. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
  22. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  23. Iijima H., Dunbar J. B., Jr, Marshall G. R. Calibration of effective van der Waals atomic contact radii for proteins and peptides. Proteins. 1987;2(4):330–339. doi: 10.1002/prot.340020408. [DOI] [PubMed] [Google Scholar]
  24. Johnson W. C., Jr, Pagano T. G., Basson C. T., Madri J. A., Gooley P., Armitage I. M. Biologically active Arg-Gly-Asp oligopeptides assume a type II beta-turn in solution. Biochemistry. 1993 Jan 12;32(1):268–273. doi: 10.1021/bi00052a034. [DOI] [PubMed] [Google Scholar]
  25. Jukes T. H. Arginine as an evolutionary intruder into protein synthesis. Biochem Biophys Res Commun. 1973 Aug 6;53(3):709–714. doi: 10.1016/0006-291x(73)90151-4. [DOI] [PubMed] [Google Scholar]
  26. Kishimoto T. K., O'Connor K., Lee A., Roberts T. M., Springer T. A. Cloning of the beta subunit of the leukocyte adhesion proteins: homology to an extracellular matrix receptor defines a novel supergene family. Cell. 1987 Feb 27;48(4):681–690. doi: 10.1016/0092-8674(87)90246-7. [DOI] [PubMed] [Google Scholar]
  27. Kloczewiak M., Timmons S., Bednarek M. A., Sakon M., Hawiger J. Platelet receptor recognition domain on the gamma chain of human fibrinogen and its synthetic peptide analogues. Biochemistry. 1989 Apr 4;28(7):2915–2919. doi: 10.1021/bi00433a025. [DOI] [PubMed] [Google Scholar]
  28. Kloczewiak M., Timmons S., Lukas T. J., Hawiger J. Platelet receptor recognition site on human fibrinogen. Synthesis and structure-function relationship of peptides corresponding to the carboxy-terminal segment of the gamma chain. Biochemistry. 1984 Apr 10;23(8):1767–1774. doi: 10.1021/bi00303a028. [DOI] [PubMed] [Google Scholar]
  29. Lanza F., Stierlé A., Fournier D., Morales M., André G., Nurden A. T., Cazenave J. P. A new variant of Glanzmann's thrombasthenia (Strasbourg I). Platelets with functionally defective glycoprotein IIb-IIIa complexes and a glycoprotein IIIa 214Arg----214Trp mutation. J Clin Invest. 1992 Jun;89(6):1995–2004. doi: 10.1172/JCI115808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Marguerie G. A., Plow E. F., Edgington T. S. Human platelets possess an inducible and saturable receptor specific for fibrinogen. J Biol Chem. 1979 Jun 25;254(12):5357–5363. [PubMed] [Google Scholar]
  31. Mayo K. H., Parra-Diaz D., McCarthy J. B., Chelberg M. Cell adhesion promoting peptide GVKGDKGNPGWPGAP from the collagen type IV triple helix: cis/trans proline-induced multiple 1H NMR conformations and evidence for a KG/PG multiple turn repeat motif in the all-trans proline state. Biochemistry. 1991 Aug 20;30(33):8251–8267. doi: 10.1021/bi00247a022. [DOI] [PubMed] [Google Scholar]
  32. Phillips D. R., Charo I. F., Parise L. V., Fitzgerald L. A. The platelet membrane glycoprotein IIb-IIIa complex. Blood. 1988 Apr;71(4):831–843. [PubMed] [Google Scholar]
  33. Pierschbacher M. D., Hayman E. G., Ruoslahti E. Location of the cell-attachment site in fibronectin with monoclonal antibodies and proteolytic fragments of the molecule. Cell. 1981 Oct;26(2 Pt 2):259–267. doi: 10.1016/0092-8674(81)90308-1. [DOI] [PubMed] [Google Scholar]
  34. Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984 May 3;309(5963):30–33. doi: 10.1038/309030a0. [DOI] [PubMed] [Google Scholar]
  35. Plow E. F., D'Souza S. E., Ginsberg M. H. Ligand binding to GPIIb-IIIa: a status report. Semin Thromb Hemost. 1992;18(3):324–332. doi: 10.1055/s-2007-1002571. [DOI] [PubMed] [Google Scholar]
  36. Poncz M., Eisman R., Heidenreich R., Silver S. M., Vilaire G., Surrey S., Schwartz E., Bennett J. S. Structure of the platelet membrane glycoprotein IIb. Homology to the alpha subunits of the vitronectin and fibronectin membrane receptors. J Biol Chem. 1987 Jun 25;262(18):8476–8482. [PubMed] [Google Scholar]
  37. Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
  38. Riordan J. F., McElvany K. D., Borders C. L., Jr Arginyl residues: anion recognition sites in enzymes. Science. 1977 Mar 4;195(4281):884–886. doi: 10.1126/science.190679. [DOI] [PubMed] [Google Scholar]
  39. Santoro S. A., Lawing W. J., Jr Competition for related but nonidentical binding sites on the glycoprotein IIb-IIIa complex by peptides derived from platelet adhesive proteins. Cell. 1987 Mar 13;48(5):867–873. doi: 10.1016/0092-8674(87)90083-3. [DOI] [PubMed] [Google Scholar]
  40. Smith J. W., Cheresh D. A. The Arg-Gly-Asp binding domain of the vitronectin receptor. Photoaffinity cross-linking implicates amino acid residues 61-203 of the beta subunit. J Biol Chem. 1988 Dec 15;263(35):18726–18731. [PubMed] [Google Scholar]
  41. Smith J. W., Ruggeri Z. M., Kunicki T. J., Cheresh D. A. Interaction of integrins alpha v beta 3 and glycoprotein IIb-IIIa with fibrinogen. Differential peptide recognition accounts for distinct binding sites. J Biol Chem. 1990 Jul 25;265(21):12267–12271. [PubMed] [Google Scholar]
  42. Steiner B., Trzeciak A., Pfenninger G., Kouns W. C. Peptides derived from a sequence within beta 3 integrin bind to platelet alpha IIb beta 3 (GPIIb-IIIa) and inhibit ligand binding. J Biol Chem. 1993 Apr 5;268(10):6870–6873. [PubMed] [Google Scholar]
  43. Taylor D. B., Gartner T. K. A peptide corresponding to GPIIb alpha 300-312, a presumptive fibrinogen gamma-chain binding site on the platelet integrin GPIIb/IIIa, inhibits the adhesion of platelets to at least four adhesive ligands. J Biol Chem. 1992 Jun 15;267(17):11729–11733. [PubMed] [Google Scholar]
  44. Wallis M. On the frequency of arginine in proteins and its implications for molecular evolution. Biochem Biophys Res Commun. 1974 Feb 4;56(3):711–716. doi: 10.1016/0006-291x(74)90663-9. [DOI] [PubMed] [Google Scholar]
  45. Weisel J. W., Nagaswami C., Vilaire G., Bennett J. S. Examination of the platelet membrane glycoprotein IIb-IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy. J Biol Chem. 1992 Aug 15;267(23):16637–16643. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES