Abstract
To identify the location of the first transmembrane segment of the GluR1 glutamate receptor subunit artificial stop codons have been introduced into the N-terminal domain at amino acid positions 442, 510, and 563, namely just before and spanning the proposed first two transmembrane regions. The resultant truncated N-terminal fragments of GluR1, termed NT1, NT2, and NT3 respectively were expressed in Cos-7 cells and their cellular distribution and cell-surface expression analysed using an N-terminal antibody to GluR1. All of the fragments were fully glycosylated and were found to be associated with cell membranes but none was secreted. Differential extraction of the cell membranes indicated that both NT1 and NT2 behave as peripheral membrane proteins. In contrast NT3, like the full subunit, has integral membrane protein properties. Furthermore only NT3 is expressed at the cell surface as determined by immunofluorescence and cell-surface biotinylation. Protease protection assays indicated that only NT3 had a cytoplasmic tail. Binding studies using the selective ligand [(3)H]alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate ([(3)H]AMPA) demonstrated that NT3 does not bind ligand. Together these results indicate that the first transmembrane domain of the GluR1 subunit lies between residues 509 and 562, that the N-terminal domain alone cannot form a functional ligand-binding site and that this domain can be targeted to the cell surface provided that it has a transmembrane-spanning region.
Full Text
The Full Text of this article is available as a PDF (467.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abraham M. I., Burckhardt G., Kempson S. A. Sodium-dependent phosphate transport in a rat kidney endosomal fraction. Kidney Int. 1992 Nov;42(5):1070–1078. doi: 10.1038/ki.1992.389. [DOI] [PubMed] [Google Scholar]
- Bacskai B. J., Friedman P. A. Activation of latent Ca2+ channels in renal epithelial cells by parathyroid hormone. Nature. 1990 Sep 27;347(6291):388–391. doi: 10.1038/347388a0. [DOI] [PubMed] [Google Scholar]
- Barac-Nieto M., Spitzer A. NMR-visible intracellular P(i) and phosphoesters during regulation of Na(+)-P(i) cotransport in opossum kidney cells. Am J Physiol. 1994 Oct;267(4 Pt 1):C915–C919. doi: 10.1152/ajpcell.1994.267.4.C915. [DOI] [PubMed] [Google Scholar]
- Biber J., Brown C. D., Murer H. Sodium-dependent transport of phosphate in LLC-PK1 cells. Biochim Biophys Acta. 1983 Nov 23;735(3):325–330. doi: 10.1016/0005-2736(83)90145-1. [DOI] [PubMed] [Google Scholar]
- Biber J., Murer H. Na-Pi cotransport in LLC-PK1 cells: fast adaptive response to Pi deprivation. Am J Physiol. 1985 Nov;249(5 Pt 1):C430–C434. doi: 10.1152/ajpcell.1985.249.5.C430. [DOI] [PubMed] [Google Scholar]
- Blikstad I., Markey F., Carlsson L., Persson T., Lindberg U. Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell. 1978 Nov;15(3):935–943. doi: 10.1016/0092-8674(78)90277-5. [DOI] [PubMed] [Google Scholar]
- Brown C. D., Bodmer M., Biber J., Murer H. Sodium-dependent phosphate transport by apical membrane vesicles from a cultured renal epithelial cell line (LLC-PK1). Biochim Biophys Acta. 1984 Jan 25;769(2):471–478. doi: 10.1016/0005-2736(84)90332-8. [DOI] [PubMed] [Google Scholar]
- Brown D. Membrane recycling and epithelial cell function. Am J Physiol. 1989 Jan;256(1 Pt 2):F1–12. doi: 10.1152/ajprenal.1989.256.1.F1. [DOI] [PubMed] [Google Scholar]
- Brown D. Structural-functional features of antidiuretic hormone-induced water transport in the collecting duct. Semin Nephrol. 1991 Jul;11(4):478–501. [PubMed] [Google Scholar]
- Burgoyne R. D., Cheek T. R. Reorganisation of peripheral actin filaments as a prelude to exocytosis. Biosci Rep. 1987 Apr;7(4):281–288. doi: 10.1007/BF01121449. [DOI] [PubMed] [Google Scholar]
- Cantiello H. F., Prat A. G., Bonventre J. V., Cunningham C. C., Hartwig J. H., Ausiello D. A. Actin-binding protein contributes to cell volume regulatory ion channel activation in melanoma cells. J Biol Chem. 1993 Mar 5;268(7):4596–4599. [PubMed] [Google Scholar]
- Cantiello H. F., Stow J. L., Prat A. G., Ausiello D. A. Actin filaments regulate epithelial Na+ channel activity. Am J Physiol. 1991 Nov;261(5 Pt 1):C882–C888. doi: 10.1152/ajpcell.1991.261.5.C882. [DOI] [PubMed] [Google Scholar]
- Caron J. M. Alteration of microtubule physiology in hepatocytes by insulin. J Cell Physiol. 1989 Mar;138(3):603–610. doi: 10.1002/jcp.1041380322. [DOI] [PubMed] [Google Scholar]
- Castellino F., Heuser J., Marchetti S., Bruno B., Luini A. Glucocorticoid stabilization of actin filaments: a possible mechanism for inhibition of corticotropin release. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3775–3779. doi: 10.1073/pnas.89.9.3775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cole J. A., Eber S. L., Poelling R. E., Thorne P. K., Forte L. R. A dual mechanism for regulation of kidney phosphate transport by parathyroid hormone. Am J Physiol. 1987 Aug;253(2 Pt 1):E221–E227. doi: 10.1152/ajpendo.1987.253.2.E221. [DOI] [PubMed] [Google Scholar]
- Dabora S. L., Sheetz M. P. The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell. 1988 Jul 1;54(1):27–35. doi: 10.1016/0092-8674(88)90176-6. [DOI] [PubMed] [Google Scholar]
- Dartsch P. C., Kolb H. A., Beckmann M., Lang F. Morphological alterations and cytoskeletal reorganization in opossum kidney (OK) cells during osmotic swelling and volume regulation. Histochemistry. 1994 Aug;102(1):69–75. doi: 10.1007/BF00271051. [DOI] [PubMed] [Google Scholar]
- Ding G. H., Franki N., Condeelis J., Hays R. M. Vasopressin depolymerizes F-actin in toad bladder epithelial cells. Am J Physiol. 1991 Jan;260(1 Pt 1):C9–16. doi: 10.1152/ajpcell.1991.260.1.C9. [DOI] [PubMed] [Google Scholar]
- Eriksson J. E., Opal P., Goldman R. D. Intermediate filament dynamics. Curr Opin Cell Biol. 1992 Feb;4(1):99–104. doi: 10.1016/0955-0674(92)90065-k. [DOI] [PubMed] [Google Scholar]
- Faulstich H., Merkler I., Blackholm H., Stournaras C. Nucleotide in monomeric actin regulates the reactivity of the thiol groups. Biochemistry. 1984 Apr 10;23(8):1608–1612. doi: 10.1021/bi00303a004. [DOI] [PubMed] [Google Scholar]
- Faulstich H., Stournaras C., Doenges K. H., Zimmermann H. P. The molecular mechanism of interaction of Et3Pb+ with tubulin. FEBS Lett. 1984 Aug 20;174(1):128–131. doi: 10.1016/0014-5793(84)81090-x. [DOI] [PubMed] [Google Scholar]
- Fostinis Y., Theodoropoulos P. A., Gravanis A., Stournaras C. Heat shock protein HSP90 and its association with the cytoskeleton: a morphological study. Biochem Cell Biol. 1992 Sep;70(9):779–786. doi: 10.1139/o92-118. [DOI] [PubMed] [Google Scholar]
- Fuller C. M., Bridges R. J., Benos D. J. Forskolin- but not ionomycin-evoked Cl- secretion in colonic epithelia depends on intact microtubules. Am J Physiol. 1994 Mar;266(3 Pt 1):C661–C668. doi: 10.1152/ajpcell.1994.266.3.C661. [DOI] [PubMed] [Google Scholar]
- Glacy S. D. Pattern and time course of rhodamine-actin incorporation in cardiac myocytes. J Cell Biol. 1983 Apr;96(4):1164–1167. doi: 10.1083/jcb.96.4.1164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gluck S., Cannon C., Al-Awqati Q. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4327–4331. doi: 10.1073/pnas.79.14.4327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gmaj P., Murer H. Cellular mechanisms of inorganic phosphate transport in kidney. Physiol Rev. 1986 Jan;66(1):36–70. doi: 10.1152/physrev.1986.66.1.36. [DOI] [PubMed] [Google Scholar]
- Hansch E., Forgo J., Murer H., Biber J. Role of microtubules in the adaptive response to low phosphate of Na/Pi cotransport in opossum kidney cells. Pflugers Arch. 1993 Feb;422(5):516–522. doi: 10.1007/BF00375080. [DOI] [PubMed] [Google Scholar]
- Ho W. C., Allan V. J., van Meer G., Berger E. G., Kreis T. E. Reclustering of scattered Golgi elements occurs along microtubules. Eur J Cell Biol. 1989 Apr;48(2):250–263. [PubMed] [Google Scholar]
- Holman G. D., Kozka I. J., Clark A. E., Flower C. J., Saltis J., Habberfield A. D., Simpson I. A., Cushman S. W. Cell surface labeling of glucose transporter isoform GLUT4 by bis-mannose photolabel. Correlation with stimulation of glucose transport in rat adipose cells by insulin and phorbol ester. J Biol Chem. 1990 Oct 25;265(30):18172–18179. [PubMed] [Google Scholar]
- Hoppe A., Lin J. T., Onsgard M., Knox F. G., Dousa T. P. Quantitation of the Na(+)-Pi cotransporter in renal cortical brush border membranes. [14C]phosphonoformic acid as a useful probe to determine the density and its change in response to parathyroid hormone. J Biol Chem. 1991 Jun 25;266(18):11528–11536. [PubMed] [Google Scholar]
- Häussinger D., Stoll B., vom Dahl S., Theodoropoulos P. A., Markogiannakis E., Gravanis A., Lang F., Stournaras C. Effect of hepatocyte swelling on microtubule stability and tubulin mRNA levels. Biochem Cell Biol. 1994 Jan-Feb;72(1-2):12–19. doi: 10.1139/o94-003. [DOI] [PubMed] [Google Scholar]
- Jessen F., Hoffmann E. K. Activation of the Na+/K+/Cl- cotransport system by reorganization of the actin filaments in Ehrlich ascites tumor cells. Biochim Biophys Acta. 1992 Oct 5;1110(2):199–201. doi: 10.1016/0005-2736(92)90359-t. [DOI] [PubMed] [Google Scholar]
- Katsantonis J., Tosca A., Koukouritaki S. B., Theodoropoulos P. A., Gravanis A., Stournaras C. Differences in the G/total actin ratio and microfilament stability between normal and malignant human keratinocytes. Cell Biochem Funct. 1994 Dec;12(4):267–274. doi: 10.1002/cbf.290120407. [DOI] [PubMed] [Google Scholar]
- Kempson S. A., Helmle C., Abraham M. I., Murer H. Parathyroid hormone action on phosphate transport is inhibited by high osmolality. Am J Physiol. 1990 May;258(5 Pt 2):F1336–F1344. doi: 10.1152/ajprenal.1990.258.5.F1336. [DOI] [PubMed] [Google Scholar]
- Mills J. W., Schwiebert E. M., Stanton B. A. The cytoskeleton and membrane transport. Curr Opin Nephrol Hypertens. 1994 Sep;3(5):529–534. doi: 10.1097/00041552-199409000-00009. [DOI] [PubMed] [Google Scholar]
- Murer H., Biber J. Renal sodium-phosphate cotransport. Curr Opin Nephrol Hypertens. 1994 Sep;3(5):504–510. doi: 10.1097/00041552-199409000-00005. [DOI] [PubMed] [Google Scholar]
- Ohta Y., Akiyama T., Nishida E., Sakai H. Protein kinase C and cAMP-dependent protein kinase induce opposite effects on actin polymerizability. FEBS Lett. 1987 Oct 5;222(2):305–310. doi: 10.1016/0014-5793(87)80391-5. [DOI] [PubMed] [Google Scholar]
- Patzelt C., Brown D., Jeanrenaud B. Inhibitory effect of colchicine on amylase secretion by rat parotid glands. Possible localization in the Golgi area. J Cell Biol. 1977 Jun;73(3):578–593. doi: 10.1083/jcb.73.3.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prat A. G., Ausiello D. A., Cantiello H. F. Vasopressin and protein kinase A activate G protein-sensitive epithelial Na+ channels. Am J Physiol. 1993 Jul;265(1 Pt 1):C218–C223. doi: 10.1152/ajpcell.1993.265.1.C218. [DOI] [PubMed] [Google Scholar]
- Rao K. M., Betschart J. M., Virji M. A. Hormone-induced actin polymerization in rat hepatoma cells and human leucocytes. Biochem J. 1985 Sep 15;230(3):709–714. doi: 10.1042/bj2300709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reshkin S. J., Forgo J., Murer H. Functional asymmetry of phosphate transport and its regulation in opossum kidney cells: phosphate transport. Pflugers Arch. 1990 Jul;416(5):554–560. doi: 10.1007/BF00382689. [DOI] [PubMed] [Google Scholar]
- Simon H., Gao Y., Franki N., Hays R. M. Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct. Am J Physiol. 1993 Sep;265(3 Pt 1):C757–C762. doi: 10.1152/ajpcell.1993.265.3.C757. [DOI] [PubMed] [Google Scholar]
- Sontag J. M., Aunis D., Bader M. F. Peripheral actin filaments control calcium-mediated catecholamine release from streptolysin-O-permeabilized chromaffin cells. Eur J Cell Biol. 1988 Jun;46(2):316–326. [PubMed] [Google Scholar]
- Szczepanska-Konkel M., Yusufi A. N., Dousa T. P. Interactions of [14C]phosphonoformic acid with renal cortical brush-border membranes. Relationship to the Na+-phosphate co-transporter. J Biol Chem. 1987 Jun 15;262(17):8000–8010. [PubMed] [Google Scholar]
- Theodoropoulos P. A., Gravanis A., Saridakis I., Stournaras C. Normal and Ha-ras-1 oncogene transformed Buffalo rat liver (BRL) cells show differential resistance to cytoskeletal protein inhibitors. Cell Biochem Funct. 1992 Dec;10(4):281–288. doi: 10.1002/cbf.290100412. [DOI] [PubMed] [Google Scholar]
- Theodoropoulos P. A., Stournaras C., Stoll B., Markogiannakis E., Lang F., Gravanis A., Häussinger D. Hepatocyte swelling leads to rapid decrease of the G-/total actin ratio and increases actin mRNA levels. FEBS Lett. 1992 Oct 26;311(3):241–245. doi: 10.1016/0014-5793(92)81111-x. [DOI] [PubMed] [Google Scholar]
- Theurkauf W. E., Vallee R. B. Molecular characterization of the cAMP-dependent protein kinase bound to microtubule-associated protein 2. J Biol Chem. 1982 Mar 25;257(6):3284–3290. [PubMed] [Google Scholar]
- Vale R. D. Severing of stable microtubules by a mitotically activated protein in Xenopus egg extracts. Cell. 1991 Feb 22;64(4):827–839. doi: 10.1016/0092-8674(91)90511-v. [DOI] [PubMed] [Google Scholar]