Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Apr 1;315(Pt 1):227–234. doi: 10.1042/bj3150227

Analysis of inverse agonism at the delta opioid receptor after expression in Rat 1 fibroblasts.

I Mullaney 1, I C Carr 1, G Milligan 1
PMCID: PMC1217175  PMID: 8670111

Abstract

A cDNA encoding the mouse delta opioid receptor was expressed stably in a Rat 1 fibroblast cell line. Expression of this receptor was demonstrated both in ligand binding studies and by reverse transcriptase-PCR. In membranes of clone D2 cells the opioid peptide [D-Ala(2)]-leucine enkephalin (DADLE) produced a robust, concentration-dependent, stimulation of basal high-affinity GTPase activity; the prototypic opioid antagonist naloxone and the highly selective and potent delta opioid ligands H-Tyr-Tic-Phe-Phe-OH (TIPP) and H-Tyr-Tic[Ch2-NH]Phe-Phe-OH (TIPP[psi]) had little effect but N,N-diallyl-Tyr-Aib-Aib-Phe-Leu (ICI174864) caused a marked dose-dependent inhibition of this activity (Tic, 1,2,3,4-tetrahydroisoquinolin-2-yl-carbonyl]; Aib, alpha-aminobutyric acid). This effect of ICI174864 was reversed by TIPP[psi] and attenuated after treatment of the cells with pertussis toxin. No stimulation by DADLE or inhibition by ICI174864 was observed in Rat 1 fibroblasts that did not express the delta opioid receptor. Basal binding of [(35)S]guanosine 5'-O-(3-thio-triphosphate) to membranes of clone D2 cells was also stimulated by DADLE and inhibited by ICI174864; both of these effects were reversed by co-incubation with TIPP[psi]. When cholera toxin-catalysed [(32)P]ADP-ribosylation was performed on membranes of clone D2 cells in the absence of guanine nucleotides, a 40 kDa G1-family polypeptide was labelled in addition to both the long and short isoforms of Gsalpha. Labelling of the 40 kDa polypeptide was enhanced by addition of DADLE and fully attenuated by addition of ICI174864. In contrast, labelling of the isoforms of Gsalpha was unaffected by either opioid ligand. Again, both the positive effect of DADLE and the inhibitory effect of ICI174864 were prevented by co-incubation with TIPP[psi] which, in isolation, had little effect on cholera toxin-catalysed [(32)P]ADP-ribosylation of either Gs or Gi. These data demonstrate that the delta opioid receptor displays a spontaneous activity when expressed in this genetic background. Attenuation of this activity is produced by ICI174864, which by acting as an 'inverse agonist' in this system, functionally uncouples the expressed receptor from the cellular G-protein population. The complete attenuation of agonist-independent cholera toxin-catalysed [(32)P]ADP-ribosylation of Gi demonstrated that ICI174864 acts as an inverse agonist with high intrinsic activity at this receptor.

Full Text

The Full Text of this article is available as a PDF (517.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adie E. J., Milligan G. Regulation of basal adenylate cyclase activity in neuroblastoma x glioma hybrid, NG108-15, cells transfected to express the human beta 2 adrenoceptor: evidence for empty receptor stimulation of the adenylate cyclase cascade. Biochem J. 1994 Nov 1;303(Pt 3):803–808. doi: 10.1042/bj3030803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen L. F., Lefkowitz R. J., Caron M. G., Cotecchia S. G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances mitogenesis and tumorigenicity. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11354–11358. doi: 10.1073/pnas.88.24.11354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barker E. L., Westphal R. S., Schmidt D., Sanders-Bush E. Constitutively active 5-hydroxytryptamine2C receptors reveal novel inverse agonist activity of receptor ligands. J Biol Chem. 1994 Apr 22;269(16):11687–11690. [PubMed] [Google Scholar]
  4. Chen Y., Mestek A., Liu J., Hurley J. A., Yu L. Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol Pharmacol. 1993 Jul;44(1):8–12. [PubMed] [Google Scholar]
  5. Chidiac P., Hebert T. E., Valiquette M., Dennis M., Bouvier M. Inverse agonist activity of beta-adrenergic antagonists. Mol Pharmacol. 1994 Mar;45(3):490–499. [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Costa T., Herz A. Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7321–7325. doi: 10.1073/pnas.86.19.7321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Costa T., Ogino Y., Munson P. J., Onaran H. O., Rodbard D. Drug efficacy at guanine nucleotide-binding regulatory protein-linked receptors: thermodynamic interpretation of negative antagonism and of receptor activity in the absence of ligand. Mol Pharmacol. 1992 Mar;41(3):549–560. [PubMed] [Google Scholar]
  9. Coughlin S. R. Expanding horizons for receptors coupled to G proteins: diversity and disease. Curr Opin Cell Biol. 1994 Apr;6(2):191–197. doi: 10.1016/0955-0674(94)90135-x. [DOI] [PubMed] [Google Scholar]
  10. Eason M. G., Jacinto M. T., Liggett S. B. Contribution of ligand structure to activation of alpha 2-adrenergic receptor subtype coupling to Gs. Mol Pharmacol. 1994 Apr;45(4):696–702. [PubMed] [Google Scholar]
  11. Evans C. J., Keith D. E., Jr, Morrison H., Magendzo K., Edwards R. H. Cloning of a delta opioid receptor by functional expression. Science. 1992 Dec 18;258(5090):1952–1955. doi: 10.1126/science.1335167. [DOI] [PubMed] [Google Scholar]
  12. Fukuda K., Kato S., Mori K., Nishi M., Takeshima H. Primary structures and expression from cDNAs of rat opioid receptor delta- and mu-subtypes. FEBS Lett. 1993 Aug 2;327(3):311–314. doi: 10.1016/0014-5793(93)81011-n. [DOI] [PubMed] [Google Scholar]
  13. Gierschik P., Sidiropoulos D., Jakobs K. H. Two distinct Gi-proteins mediate formyl peptide receptor signal transduction in human leukemia (HL-60) cells. J Biol Chem. 1989 Dec 25;264(36):21470–21473. [PubMed] [Google Scholar]
  14. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  15. Kieffer B. L., Befort K., Gaveriaux-Ruff C., Hirth C. G. The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12048–12052. doi: 10.1073/pnas.89.24.12048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koski G., Klee W. A. Opiates inhibit adenylate cyclase by stimulating GTP hydrolysis. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4185–4189. doi: 10.1073/pnas.78.7.4185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McKenzie F. R., Milligan G. Delta-opioid-receptor-mediated inhibition of adenylate cyclase is transduced specifically by the guanine-nucleotide-binding protein Gi2. Biochem J. 1990 Apr 15;267(2):391–398. doi: 10.1042/bj2670391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Milligan G., Bond R. A., Lee M. Inverse agonism: pharmacological curiosity or potential therapeutic strategy? Trends Pharmacol Sci. 1995 Jan;16(1):10–13. doi: 10.1016/s0165-6147(00)88963-4. [DOI] [PubMed] [Google Scholar]
  19. Milligan G., Carr C., Gould G. W., Mullaney I., Lavan B. E. Agonist-dependent, cholera toxin-catalyzed ADP-ribosylation of pertussis toxin-sensitive G-proteins following transfection of the human alpha 2-C10 adrenergic receptor into rat 1 fibroblasts. Evidence for the direct interaction of a single receptor with two pertussis toxin-sensitive G-proteins, Gi2 and Gi3. J Biol Chem. 1991 Apr 5;266(10):6447–6455. [PubMed] [Google Scholar]
  20. Milligan G. Foetal-calf serum stimulates a pertussis-toxin-sensitive high-affinity GTPase activity in rat glioma C6 BU1 cells. Biochem J. 1987 Jul 15;245(2):501–505. doi: 10.1042/bj2450501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Milligan G., McKenzie F. R. Opioid peptides promote cholera-toxin-catalysed ADP-ribosylation of the inhibitory guanine-nucleotide-binding protein (Gi) in membranes of neuroblastoma x glioma hybrid cells. Biochem J. 1988 Jun 1;252(2):369–373. doi: 10.1042/bj2520369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Raymond J. R. Hereditary and acquired defects in signaling through the hormone-receptor-G protein complex. Am J Physiol. 1994 Feb;266(2 Pt 2):F163–F174. doi: 10.1152/ajprenal.1994.266.2.F163. [DOI] [PubMed] [Google Scholar]
  23. Reisine T., Bell G. I. Molecular biology of opioid receptors. Trends Neurosci. 1993 Dec;16(12):506–510. doi: 10.1016/0166-2236(93)90194-q. [DOI] [PubMed] [Google Scholar]
  24. Remaury A., Larrouy D., Daviaud D., Rouot B., Paris H. Coupling of the alpha 2-adrenergic receptor to the inhibitory G-protein Gi and adenylate cyclase in HT29 cells. Biochem J. 1993 May 15;292(Pt 1):283–288. doi: 10.1042/bj2920283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roerig S. C., Loh H. H., Law P. Y. Identification of three separate guanine nucleotide-binding proteins that interact with the delta-opioid receptor in NG108-15 neuroblastoma x glioma hybrid cells. Mol Pharmacol. 1992 May;41(5):822–831. [PubMed] [Google Scholar]
  26. Samama P., Pei G., Costa T., Cotecchia S., Lefkowitz R. J. Negative antagonists promote an inactive conformation of the beta 2-adrenergic receptor. Mol Pharmacol. 1994 Mar;45(3):390–394. [PubMed] [Google Scholar]
  27. Schiller P. W., Nguyen T. M., Weltrowska G., Wilkes B. C., Marsden B. J., Lemieux C., Chung N. N. Differential stereochemical requirements of mu vs. delta opioid receptors for ligand binding and signal transduction: development of a class of potent and highly delta-selective peptide antagonists. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11871–11875. doi: 10.1073/pnas.89.24.11871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schütz W., Freissmuth M. Reverse intrinsic activity of antagonists on G protein-coupled receptors. Trends Pharmacol Sci. 1992 Oct;13(10):376–380. doi: 10.1016/0165-6147(92)90116-n. [DOI] [PubMed] [Google Scholar]
  29. Thomas D. R., Faruq S. A., Balcarek J. M., Brown A. M. Pharmacological characterisation of [35S]-GTPgammaS binding to Chinese hamster ovary cell membranes stably expressing cloned human 5-HT1D receptor subtypes. J Recept Signal Transduct Res. 1995 Jan-Mar;15(1-4):199–211. doi: 10.3109/10799899509045217. [DOI] [PubMed] [Google Scholar]
  30. Tiberi M., Caron M. G. High agonist-independent activity is a distinguishing feature of the dopamine D1B receptor subtype. J Biol Chem. 1994 Nov 11;269(45):27925–27931. [PubMed] [Google Scholar]
  31. Weiland T., Jakobs K. H. Measurement of receptor-stimulated guanosine 5'-O-(gamma-thio)triphosphate binding by G proteins. Methods Enzymol. 1994;237:3–13. doi: 10.1016/s0076-6879(94)37048-6. [DOI] [PubMed] [Google Scholar]
  32. Yasuda K., Raynor K., Kong H., Breder C. D., Takeda J., Reisine T., Bell G. I. Cloning and functional comparison of kappa and delta opioid receptors from mouse brain. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6736–6740. doi: 10.1073/pnas.90.14.6736. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES