Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Apr 1;315(Pt 1):241–247. doi: 10.1042/bj3150241

Na+/Pi co-transport alters rapidly cytoskeletal protein polymerization dynamics in opossum kidney cells.

E A Papakonstanti 1, D S Emmanouel 1, A Gravanis 1, C Stournaras 1
PMCID: PMC1217177  PMID: 8670113

Abstract

We studied with biochemical and immunofluorescent techniques the interactions between the actin microfilament and tubulin microtubule cytoskeleton and Na+/P1 co-transport in opossum kidney cells, a line with proximal tubular characteristics. On brief (5 min) incubation of the cells with a low (0.1 mM) concentration of Pi, a rapid F-actin depolymerization takes place, which fails to occur in cells incubated under similar conditions with 1 mM Pi. The disassembly of actin microfilaments could be quantitatively expressed as a 33% increase in the ration of monomeric G-actin to polymerized F-actin (G/F-actin ration from 0.80 +/- 0.03 to 1.06 +/- 0.06, n = 28, P<0.01), owing to a significant decrease in the latter. Under these conditions microfilaments were also markedly destabilized, as shown by their diminished resistance to graded cytochalasin B concentrations. In addition, incubation of opossum kidney cells with low Pi concentrations (0.1 mM) resulted within 5 min in a substantial depolymerization of microtubules, shown by immunofluorescence microscopy and measured as a 70.9 +/- 6.9% (n = 11, P<0.01) decrement by immunoblot analysis. These changes, which occur only when extracellular Pi concentrations are kept low, seem to be related to a significant increase within 5 min in the rate of cellular Pi uptake by 25.5% under these conditions. The shifts in the dynamic equilibria between monomeric and polymerized actin and tubulin in response to cellular Pi uptake were transient, being fully reversible within 30 min. Moreover, the effect of Pi seemed to be specific because inhibition of its uptake by phosphonoformic acid blunted microtubular disassembly markedly. In contrast, measurement of Pi uptake in the presence of agents known to stabilize cytoskeletal structures showed a substantial decrease with phallacidin, which stabilized microfilaments, whereas the microtubule stabilizer taxol had no apparent effect. These results indicate that acute alterations in the polymerization dynamics and stability of both microfilaments and microtubules are involved in the modulation of Na+/Pi co-transport and suggest important cytoskeletal participation in proximal tubular transport functions.

Full Text

The Full Text of this article is available as a PDF (467.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham M. I., Burckhardt G., Kempson S. A. Sodium-dependent phosphate transport in a rat kidney endosomal fraction. Kidney Int. 1992 Nov;42(5):1070–1078. doi: 10.1038/ki.1992.389. [DOI] [PubMed] [Google Scholar]
  2. Bacskai B. J., Friedman P. A. Activation of latent Ca2+ channels in renal epithelial cells by parathyroid hormone. Nature. 1990 Sep 27;347(6291):388–391. doi: 10.1038/347388a0. [DOI] [PubMed] [Google Scholar]
  3. Barac-Nieto M., Spitzer A. NMR-visible intracellular P(i) and phosphoesters during regulation of Na(+)-P(i) cotransport in opossum kidney cells. Am J Physiol. 1994 Oct;267(4 Pt 1):C915–C919. doi: 10.1152/ajpcell.1994.267.4.C915. [DOI] [PubMed] [Google Scholar]
  4. Biber J., Brown C. D., Murer H. Sodium-dependent transport of phosphate in LLC-PK1 cells. Biochim Biophys Acta. 1983 Nov 23;735(3):325–330. doi: 10.1016/0005-2736(83)90145-1. [DOI] [PubMed] [Google Scholar]
  5. Biber J., Murer H. Na-Pi cotransport in LLC-PK1 cells: fast adaptive response to Pi deprivation. Am J Physiol. 1985 Nov;249(5 Pt 1):C430–C434. doi: 10.1152/ajpcell.1985.249.5.C430. [DOI] [PubMed] [Google Scholar]
  6. Blikstad I., Markey F., Carlsson L., Persson T., Lindberg U. Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell. 1978 Nov;15(3):935–943. doi: 10.1016/0092-8674(78)90277-5. [DOI] [PubMed] [Google Scholar]
  7. Brown C. D., Bodmer M., Biber J., Murer H. Sodium-dependent phosphate transport by apical membrane vesicles from a cultured renal epithelial cell line (LLC-PK1). Biochim Biophys Acta. 1984 Jan 25;769(2):471–478. doi: 10.1016/0005-2736(84)90332-8. [DOI] [PubMed] [Google Scholar]
  8. Brown D. Membrane recycling and epithelial cell function. Am J Physiol. 1989 Jan;256(1 Pt 2):F1–12. doi: 10.1152/ajprenal.1989.256.1.F1. [DOI] [PubMed] [Google Scholar]
  9. Brown D. Structural-functional features of antidiuretic hormone-induced water transport in the collecting duct. Semin Nephrol. 1991 Jul;11(4):478–501. [PubMed] [Google Scholar]
  10. Burgoyne R. D., Cheek T. R. Reorganisation of peripheral actin filaments as a prelude to exocytosis. Biosci Rep. 1987 Apr;7(4):281–288. doi: 10.1007/BF01121449. [DOI] [PubMed] [Google Scholar]
  11. Cantiello H. F., Prat A. G., Bonventre J. V., Cunningham C. C., Hartwig J. H., Ausiello D. A. Actin-binding protein contributes to cell volume regulatory ion channel activation in melanoma cells. J Biol Chem. 1993 Mar 5;268(7):4596–4599. [PubMed] [Google Scholar]
  12. Cantiello H. F., Stow J. L., Prat A. G., Ausiello D. A. Actin filaments regulate epithelial Na+ channel activity. Am J Physiol. 1991 Nov;261(5 Pt 1):C882–C888. doi: 10.1152/ajpcell.1991.261.5.C882. [DOI] [PubMed] [Google Scholar]
  13. Caron J. M. Alteration of microtubule physiology in hepatocytes by insulin. J Cell Physiol. 1989 Mar;138(3):603–610. doi: 10.1002/jcp.1041380322. [DOI] [PubMed] [Google Scholar]
  14. Castellino F., Heuser J., Marchetti S., Bruno B., Luini A. Glucocorticoid stabilization of actin filaments: a possible mechanism for inhibition of corticotropin release. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3775–3779. doi: 10.1073/pnas.89.9.3775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cole J. A., Eber S. L., Poelling R. E., Thorne P. K., Forte L. R. A dual mechanism for regulation of kidney phosphate transport by parathyroid hormone. Am J Physiol. 1987 Aug;253(2 Pt 1):E221–E227. doi: 10.1152/ajpendo.1987.253.2.E221. [DOI] [PubMed] [Google Scholar]
  16. Dabora S. L., Sheetz M. P. The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell. 1988 Jul 1;54(1):27–35. doi: 10.1016/0092-8674(88)90176-6. [DOI] [PubMed] [Google Scholar]
  17. Dartsch P. C., Kolb H. A., Beckmann M., Lang F. Morphological alterations and cytoskeletal reorganization in opossum kidney (OK) cells during osmotic swelling and volume regulation. Histochemistry. 1994 Aug;102(1):69–75. doi: 10.1007/BF00271051. [DOI] [PubMed] [Google Scholar]
  18. Ding G. H., Franki N., Condeelis J., Hays R. M. Vasopressin depolymerizes F-actin in toad bladder epithelial cells. Am J Physiol. 1991 Jan;260(1 Pt 1):C9–16. doi: 10.1152/ajpcell.1991.260.1.C9. [DOI] [PubMed] [Google Scholar]
  19. Eriksson J. E., Opal P., Goldman R. D. Intermediate filament dynamics. Curr Opin Cell Biol. 1992 Feb;4(1):99–104. doi: 10.1016/0955-0674(92)90065-k. [DOI] [PubMed] [Google Scholar]
  20. Faulstich H., Merkler I., Blackholm H., Stournaras C. Nucleotide in monomeric actin regulates the reactivity of the thiol groups. Biochemistry. 1984 Apr 10;23(8):1608–1612. doi: 10.1021/bi00303a004. [DOI] [PubMed] [Google Scholar]
  21. Faulstich H., Stournaras C., Doenges K. H., Zimmermann H. P. The molecular mechanism of interaction of Et3Pb+ with tubulin. FEBS Lett. 1984 Aug 20;174(1):128–131. doi: 10.1016/0014-5793(84)81090-x. [DOI] [PubMed] [Google Scholar]
  22. Fostinis Y., Theodoropoulos P. A., Gravanis A., Stournaras C. Heat shock protein HSP90 and its association with the cytoskeleton: a morphological study. Biochem Cell Biol. 1992 Sep;70(9):779–786. doi: 10.1139/o92-118. [DOI] [PubMed] [Google Scholar]
  23. Fuller C. M., Bridges R. J., Benos D. J. Forskolin- but not ionomycin-evoked Cl- secretion in colonic epithelia depends on intact microtubules. Am J Physiol. 1994 Mar;266(3 Pt 1):C661–C668. doi: 10.1152/ajpcell.1994.266.3.C661. [DOI] [PubMed] [Google Scholar]
  24. Glacy S. D. Pattern and time course of rhodamine-actin incorporation in cardiac myocytes. J Cell Biol. 1983 Apr;96(4):1164–1167. doi: 10.1083/jcb.96.4.1164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gluck S., Cannon C., Al-Awqati Q. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4327–4331. doi: 10.1073/pnas.79.14.4327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gmaj P., Murer H. Cellular mechanisms of inorganic phosphate transport in kidney. Physiol Rev. 1986 Jan;66(1):36–70. doi: 10.1152/physrev.1986.66.1.36. [DOI] [PubMed] [Google Scholar]
  27. Hansch E., Forgo J., Murer H., Biber J. Role of microtubules in the adaptive response to low phosphate of Na/Pi cotransport in opossum kidney cells. Pflugers Arch. 1993 Feb;422(5):516–522. doi: 10.1007/BF00375080. [DOI] [PubMed] [Google Scholar]
  28. Ho W. C., Allan V. J., van Meer G., Berger E. G., Kreis T. E. Reclustering of scattered Golgi elements occurs along microtubules. Eur J Cell Biol. 1989 Apr;48(2):250–263. [PubMed] [Google Scholar]
  29. Holman G. D., Kozka I. J., Clark A. E., Flower C. J., Saltis J., Habberfield A. D., Simpson I. A., Cushman S. W. Cell surface labeling of glucose transporter isoform GLUT4 by bis-mannose photolabel. Correlation with stimulation of glucose transport in rat adipose cells by insulin and phorbol ester. J Biol Chem. 1990 Oct 25;265(30):18172–18179. [PubMed] [Google Scholar]
  30. Hoppe A., Lin J. T., Onsgard M., Knox F. G., Dousa T. P. Quantitation of the Na(+)-Pi cotransporter in renal cortical brush border membranes. [14C]phosphonoformic acid as a useful probe to determine the density and its change in response to parathyroid hormone. J Biol Chem. 1991 Jun 25;266(18):11528–11536. [PubMed] [Google Scholar]
  31. Häussinger D., Stoll B., vom Dahl S., Theodoropoulos P. A., Markogiannakis E., Gravanis A., Lang F., Stournaras C. Effect of hepatocyte swelling on microtubule stability and tubulin mRNA levels. Biochem Cell Biol. 1994 Jan-Feb;72(1-2):12–19. doi: 10.1139/o94-003. [DOI] [PubMed] [Google Scholar]
  32. Jessen F., Hoffmann E. K. Activation of the Na+/K+/Cl- cotransport system by reorganization of the actin filaments in Ehrlich ascites tumor cells. Biochim Biophys Acta. 1992 Oct 5;1110(2):199–201. doi: 10.1016/0005-2736(92)90359-t. [DOI] [PubMed] [Google Scholar]
  33. Katsantonis J., Tosca A., Koukouritaki S. B., Theodoropoulos P. A., Gravanis A., Stournaras C. Differences in the G/total actin ratio and microfilament stability between normal and malignant human keratinocytes. Cell Biochem Funct. 1994 Dec;12(4):267–274. doi: 10.1002/cbf.290120407. [DOI] [PubMed] [Google Scholar]
  34. Kempson S. A., Helmle C., Abraham M. I., Murer H. Parathyroid hormone action on phosphate transport is inhibited by high osmolality. Am J Physiol. 1990 May;258(5 Pt 2):F1336–F1344. doi: 10.1152/ajprenal.1990.258.5.F1336. [DOI] [PubMed] [Google Scholar]
  35. Mills J. W., Schwiebert E. M., Stanton B. A. The cytoskeleton and membrane transport. Curr Opin Nephrol Hypertens. 1994 Sep;3(5):529–534. doi: 10.1097/00041552-199409000-00009. [DOI] [PubMed] [Google Scholar]
  36. Murer H., Biber J. Renal sodium-phosphate cotransport. Curr Opin Nephrol Hypertens. 1994 Sep;3(5):504–510. doi: 10.1097/00041552-199409000-00005. [DOI] [PubMed] [Google Scholar]
  37. Ohta Y., Akiyama T., Nishida E., Sakai H. Protein kinase C and cAMP-dependent protein kinase induce opposite effects on actin polymerizability. FEBS Lett. 1987 Oct 5;222(2):305–310. doi: 10.1016/0014-5793(87)80391-5. [DOI] [PubMed] [Google Scholar]
  38. Patzelt C., Brown D., Jeanrenaud B. Inhibitory effect of colchicine on amylase secretion by rat parotid glands. Possible localization in the Golgi area. J Cell Biol. 1977 Jun;73(3):578–593. doi: 10.1083/jcb.73.3.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Prat A. G., Ausiello D. A., Cantiello H. F. Vasopressin and protein kinase A activate G protein-sensitive epithelial Na+ channels. Am J Physiol. 1993 Jul;265(1 Pt 1):C218–C223. doi: 10.1152/ajpcell.1993.265.1.C218. [DOI] [PubMed] [Google Scholar]
  40. Rao K. M., Betschart J. M., Virji M. A. Hormone-induced actin polymerization in rat hepatoma cells and human leucocytes. Biochem J. 1985 Sep 15;230(3):709–714. doi: 10.1042/bj2300709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Reshkin S. J., Forgo J., Murer H. Functional asymmetry of phosphate transport and its regulation in opossum kidney cells: phosphate transport. Pflugers Arch. 1990 Jul;416(5):554–560. doi: 10.1007/BF00382689. [DOI] [PubMed] [Google Scholar]
  42. Simon H., Gao Y., Franki N., Hays R. M. Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct. Am J Physiol. 1993 Sep;265(3 Pt 1):C757–C762. doi: 10.1152/ajpcell.1993.265.3.C757. [DOI] [PubMed] [Google Scholar]
  43. Sontag J. M., Aunis D., Bader M. F. Peripheral actin filaments control calcium-mediated catecholamine release from streptolysin-O-permeabilized chromaffin cells. Eur J Cell Biol. 1988 Jun;46(2):316–326. [PubMed] [Google Scholar]
  44. Szczepanska-Konkel M., Yusufi A. N., Dousa T. P. Interactions of [14C]phosphonoformic acid with renal cortical brush-border membranes. Relationship to the Na+-phosphate co-transporter. J Biol Chem. 1987 Jun 15;262(17):8000–8010. [PubMed] [Google Scholar]
  45. Theodoropoulos P. A., Gravanis A., Saridakis I., Stournaras C. Normal and Ha-ras-1 oncogene transformed Buffalo rat liver (BRL) cells show differential resistance to cytoskeletal protein inhibitors. Cell Biochem Funct. 1992 Dec;10(4):281–288. doi: 10.1002/cbf.290100412. [DOI] [PubMed] [Google Scholar]
  46. Theodoropoulos P. A., Stournaras C., Stoll B., Markogiannakis E., Lang F., Gravanis A., Häussinger D. Hepatocyte swelling leads to rapid decrease of the G-/total actin ratio and increases actin mRNA levels. FEBS Lett. 1992 Oct 26;311(3):241–245. doi: 10.1016/0014-5793(92)81111-x. [DOI] [PubMed] [Google Scholar]
  47. Theurkauf W. E., Vallee R. B. Molecular characterization of the cAMP-dependent protein kinase bound to microtubule-associated protein 2. J Biol Chem. 1982 Mar 25;257(6):3284–3290. [PubMed] [Google Scholar]
  48. Vale R. D. Severing of stable microtubules by a mitotically activated protein in Xenopus egg extracts. Cell. 1991 Feb 22;64(4):827–839. doi: 10.1016/0092-8674(91)90511-v. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES