Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Apr 1;315(Pt 1):249–256. doi: 10.1042/bj3150249

Cloning and expression of pig kidney dopa decarboxylase: comparison of the naturally occurring and recombinant enzymes.

P S Moore 1, P Dominici 1, C Borri Voltattorni 1
PMCID: PMC1217178  PMID: 8670114

Abstract

L-Aromatic amino acid decarboxylase (dopa decarboxylase; DDC) is a pyridoxal 5'-phosphate (PLP)-dependent homodimeric enzyme that catalyses the decarboxylation of L-dopa and other L-aromatic amino acids. To advance structure-function studies with the enzyme, a cDNA that codes for the protein from pig kidney has been cloned by joining a partial cDNA obtained by library screening with a synthetic portion constructed by the annealing and extension of long oligonucleotides. The hybrid cDNA was then expressed in Escherichia coli to produce recombinant protein. During characterization of the recombinant enzyme it was unexpectedly observed that it possesses certain differences from the enzyme purified from pig kidney. Whereas the later protein binds 1 molecule of PLP per dimer, the recombinant enzyme was found to bind two molecules of coenzyme per dimer. Moreover, the Vmax was twice that of the protein purified from tissue. On addition of substrate, the absorbance changes accompanying transaldimination were likewise 2-fold greater in the recombinant enzyme. Examination of the respective apoenzymes by absorbance, CD and fluorescence spectroscopy revealed distinct differences. The recombinant apoprotein has no significant absorbance at 335 nm, unlike the pig kidney apoenzyme; in the latter case this residual absorbance is associated with a positive dichroic signal. When excited at 335 nm the pig kidney apoenzyme has a pronounced emission maximum at 385 nm, in contrast with its recombinant counterpart, which shows a weak broad emission at about 400 nm. However, the holoenzyme-apoenzyme transition did not markedly alter the respective fluorescence properties of either recombinant or pig kidney DDC when excited at 335 nm. Taken together, these findings indicate that recombinant pig kidney DDC has two active-site PLP molecules and therefore displays structural characteristics typical of PLP-dependent homodimeric enzymes. The natural enzyme contains one active-site PLP molecule whereas the remaining PLP binding site is most probably occupied by an inactive covalently bound coenzyme derivative; some speculations are made about its origin. The coenzyme absorbing bands of recombinant DDC show a modest pH dependence at 335 and 425 nm. A putative working model is presented to explain this behaviour.

Full Text

The Full Text of this article is available as a PDF (728.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert V. R., Allen J. M., Joh T. H. A single gene codes for aromatic L-amino acid decarboxylase in both neuronal and non-neuronal tissues. J Biol Chem. 1987 Jul 5;262(19):9404–9411. [PubMed] [Google Scholar]
  2. Charteris A., John R. An investigation of the assay of dopamine using trinitrobenzensulphonic acid. Anal Biochem. 1975 Jun;66(2):365–371. doi: 10.1016/0003-2697(75)90604-1. [DOI] [PubMed] [Google Scholar]
  3. Christenson J. G., Dairman W., Udenfriend S. Preparation and properties of a homogeneous aromatic L-amino acid decarboxylase from hog kidney. Arch Biochem Biophys. 1970 Nov;141(1):356–367. doi: 10.1016/0003-9861(70)90144-x. [DOI] [PubMed] [Google Scholar]
  4. Dominici P., Maras B., Mei G., Borri Voltattorni C. Affinity labeling of pig kidney 3,4-dihydroxyphenylalanine (Dopa) decarboxylase with N-(bromoacetyl)pyridoxamine 5'-phosphate. Modification of an active-site cysteine. Eur J Biochem. 1991 Oct 15;201(2):393–397. doi: 10.1111/j.1432-1033.1991.tb16296.x. [DOI] [PubMed] [Google Scholar]
  5. Dominici P., Moore P. S., Borri Voltattorni C. Dissociation, unfolding and refolding trials of pig kidney 3,4-dihydroxyphenylalanine (dopa) decarboxylase. Biochem J. 1993 Oct 15;295(Pt 2):493–500. doi: 10.1042/bj2950493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dominici P., Moore P. S., Voltattorni C. B. Modified purification of L-aromatic amino acid decarboxylase from pig kidney. Protein Expr Purif. 1993 Aug;4(4):345–347. doi: 10.1006/prep.1993.1045. [DOI] [PubMed] [Google Scholar]
  7. Dominici P., Tancini B., Barra D., Voltattorni C. B. Purification and characterization of rat-liver 3,4-dihydroxyphenylalanine decarboxylase. Eur J Biochem. 1987 Nov 16;169(1):209–213. doi: 10.1111/j.1432-1033.1987.tb13599.x. [DOI] [PubMed] [Google Scholar]
  8. Dominici P., Tancini B., Borri Voltattorni C. Chemical modification of pig kidney 3,4-dihydroxyphenylalanine decarboxylase with diethyl pyrocarbonate. Evidence for an essential histidyl residue. J Biol Chem. 1985 Sep 5;260(19):10583–10589. [PubMed] [Google Scholar]
  9. Eveleth D. D., Gietz R. D., Spencer C. A., Nargang F. E., Hodgetts R. B., Marsh J. L. Sequence and structure of the dopa decarboxylase gene of Drosophila: evidence for novel RNA splicing variants. EMBO J. 1986 Oct;5(10):2663–2672. doi: 10.1002/j.1460-2075.1986.tb04549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fiori A., Turano C., Borri-Voltattorni C., Minelli A., Codini M. Interaction of L-DOPA decarboxylase with substrates: a spectrophotometric study. FEBS Lett. 1975 Jun 15;54(2):122–125. doi: 10.1016/0014-5793(75)80057-3. [DOI] [PubMed] [Google Scholar]
  11. Hayashi H., Mizuguchi H., Kagamiyama H. Rat liver aromatic L-amino acid decarboxylase: spectroscopic and kinetic analysis of the coenzyme and reaction intermediates. Biochemistry. 1993 Jan 26;32(3):812–818. doi: 10.1021/bi00054a011. [DOI] [PubMed] [Google Scholar]
  12. Ichinose H., Kurosawa Y., Titani K., Fujita K., Nagatsu T. Isolation and characterization of a cDNA clone encoding human aromatic L-amino acid decarboxylase. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1024–1030. doi: 10.1016/0006-291x(89)91772-5. [DOI] [PubMed] [Google Scholar]
  13. Jayaraman K., Puccini C. J. A PCR-mediated gene synthesis strategy involving the assembly of oligonucleotides representing only one of the strands. Biotechniques. 1992 Mar;12(3):392–398. [PubMed] [Google Scholar]
  14. Lancaster G. A., Sourkes T. L. Purification and properties of hog-kidney 3,4-dihydroxyphenylalanine decarboxylase. Can J Biochem. 1972 Jul;50(7):791–797. doi: 10.1139/o72-110. [DOI] [PubMed] [Google Scholar]
  15. Malashkevich V. N., Filipponi P., Sauder U., Dominici P., Jansonius J. N., Borri Voltattorni C. Crystallization and preliminary X-ray analysis of pig kidney DOPA decarboxylase. J Mol Biol. 1992 Apr 20;224(4):1167–1170. doi: 10.1016/0022-2836(92)90477-2. [DOI] [PubMed] [Google Scholar]
  16. Maras B., Dominici P., Barra D., Bossa F., Voltattorni C. B. Pig kidney 3,4-dihydroxyphenylalanine (dopa) decarboxylase. Primary structure and relationships to other amino acid decarboxylases. Eur J Biochem. 1991 Oct 15;201(2):385–391. doi: 10.1111/j.1432-1033.1991.tb16295.x. [DOI] [PubMed] [Google Scholar]
  17. Minelli A., Charteris A. T., Voltattorni C. B., John R. A. Reactions of DOPA (3,4-dihydroxyphenylalanine) decarboxylase with DOPA. Biochem J. 1979 Nov 1;183(2):361–368. doi: 10.1042/bj1830361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. O'Leary M. H., Baughn R. L. Decarboxylation-dependent transamination catalyzed by mammalian 3,4-dihydroxyphenylalanine decarboxylase. J Biol Chem. 1977 Oct 25;252(20):7168–7173. [PubMed] [Google Scholar]
  19. Sherald A. F., Sparrow J. C., Wright T. R. A spectrophotometric assay for Drosophila dopa decarboxylase. Anal Biochem. 1973 Nov;56(1):300–305. doi: 10.1016/0003-2697(73)90194-2. [DOI] [PubMed] [Google Scholar]
  20. Srinivasan K., Awapara J. Substrate specificity and other properties of DOPA decarboxylase from guinea pig kidneys. Biochim Biophys Acta. 1978 Oct 12;526(2):597–604. doi: 10.1016/0005-2744(78)90150-x. [DOI] [PubMed] [Google Scholar]
  21. Taketoshi M., Horio Y., Imamura I., Tanaka T., Fukui H., Wada H. Molecular cloning of guinea-pig aromatic-L-amino acid decarboxylase cDNA. Biochem Biophys Res Commun. 1990 Aug 16;170(3):1229–1235. doi: 10.1016/0006-291x(90)90525-r. [DOI] [PubMed] [Google Scholar]
  22. Tanaka T., Horio Y., Taketoshi M., Imamura I., Ando-Yamamoto M., Kangawa K., Matsuo H., Kuroda M., Wada H. Molecular cloning and sequencing of a cDNA of rat dopa decarboxylase: partial amino acid homologies with other enzymes synthesizing catecholamines. Proc Natl Acad Sci U S A. 1989 Oct;86(20):8142–8146. doi: 10.1073/pnas.86.20.8142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tancini B., Dominici P., Barra D., Voltattorni C. B. An essential arginine residue at the binding site of pig kidney 3,4-dihydroxyphenylalanine decarboxylase. Arch Biochem Biophys. 1985 May 1;238(2):565–573. doi: 10.1016/0003-9861(85)90201-2. [DOI] [PubMed] [Google Scholar]
  24. Voltattorni C. B., Minelli A., Dominici P. Interaction of aromatic amino acids in D and L forms with 3,4-dihydroxyphenylalanine decarboxylase from pig kidney. Biochemistry. 1983 Apr 26;22(9):2249–2254. doi: 10.1021/bi00278a030. [DOI] [PubMed] [Google Scholar]
  25. Voltattorni C. B., Minelli A., Turano C. Spectral properties of the coenzyme bound to DOPA decarboxylase from pig kidney. FEBS Lett. 1971 Oct 1;17(2):231–235. doi: 10.1016/0014-5793(71)80153-9. [DOI] [PubMed] [Google Scholar]
  26. Voltattorni C. B., Minelli A., Vecchini P., Fiori A., Turano C. Purification and characterization of 3,4-dihydroxyphenylalanine decarboxyase from pig kidney. Eur J Biochem. 1979 Jan 2;93(1):181–188. doi: 10.1111/j.1432-1033.1979.tb12809.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES