Abstract
Rat cDNAs for a 52-amino-acid ribosomal protein (CEP52) that is typically formed as a ubiquitin fusion protein, were cloned following reverse transcription and PCR amplification. CEP52 sequence conservation is demonstrated by the similarity of the human and rat cDNA sequences and the identity of the predicted proteins. Amplification of rat cDNA with a primer specific for the 3' non-coding region of the CEP52 gene, in combination with a consensus primer for the 5' end of the ubiquitin coding sequence, provided evidence that the rat CEP52 gene is fused to a ubiquitin reading frame. Direct sequence analysis of this PCR product confirmed the in-frame fusion of a ubiquitin coding sequence to the rat CEP52 gene. Antibodies against a synthetic CEP52 peptide were used to show that expressed CEP52 is associated with the 60 S ribosomal subunit, and that is is not linked to ubiquitin. The quantity of CEP52 found in different tissues is quite variable, but appears to correspond to the amount of ribosomes present. Although the human, Arabidopsis thaliana and Nicotiana tabacum CEP52 genes contain introns within the CEP52 coding region, the rat CEP52 coding sequence appears to lack insertions.
Full Text
The Full Text of this article is available as a PDF (424.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker R. T., Board P. G. The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes. Nucleic Acids Res. 1991 Mar 11;19(5):1035–1040. doi: 10.1093/nar/19.5.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonner W. M., West M. H., Stedman J. D. Two-dimensional gel analysis of histones in acid extracts of nuclei, cells, and tissues. Eur J Biochem. 1980 Aug;109(1):17–23. doi: 10.1111/j.1432-1033.1980.tb04762.x. [DOI] [PubMed] [Google Scholar]
- Cabrera H. L., Barrio R., Arribas C. Structure and expression of the Drosophila ubiquitin-52-amino-acid fusion-protein gene. Biochem J. 1992 Aug 15;286(Pt 1):281–288. doi: 10.1042/bj2860281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Callis J., Raasch J. A., Vierstra R. D. Ubiquitin extension proteins of Arabidopsis thaliana. Structure, localization, and expression of their promoters in transgenic tobacco. J Biol Chem. 1990 Jul 25;265(21):12486–12493. [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Deveraux Q., Wells R., Rechsteiner M. Ubiquitin metabolism in ts85 cells, a mouse carcinoma line that contains a thermolabile ubiquitin activating enzyme. J Biol Chem. 1990 Apr 15;265(11):6323–6329. [PubMed] [Google Scholar]
- Finley D., Bartel B., Varshavsky A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature. 1989 Mar 30;338(6214):394–401. doi: 10.1038/338394a0. [DOI] [PubMed] [Google Scholar]
- Genschik P., Parmentier Y., Criqui M. C., Fleck J. Sequence of a ubiquitin carboxyl extension protein of Nicotiana tabacum. Nucleic Acids Res. 1990 Jul 11;18(13):4007–4007. doi: 10.1093/nar/18.13.4007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Genschik P., Parmentier Y., Durr A., Marbach J., Criqui M. C., Jamet E., Fleck J. Ubiquitin genes are differentially regulated in protoplast-derived cultures of Nicotiana sylvestris and in response to various stresses. Plant Mol Biol. 1992 Dec;20(5):897–910. doi: 10.1007/BF00027161. [DOI] [PubMed] [Google Scholar]
- Hayashi T., Noga M., Matsuda M. Nucleotide sequence and expression of the rat polyubiquitin mRNA. Biochim Biophys Acta. 1994 Jun 21;1218(2):232–234. doi: 10.1016/0167-4781(94)90020-5. [DOI] [PubMed] [Google Scholar]
- Jones D., Candido E. P. Novel ubiquitin-like ribosomal protein fusion genes from the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. J Biol Chem. 1993 Sep 15;268(26):19545–19551. [PubMed] [Google Scholar]
- Kuwano Y., Olvera J., Wool I. G. The primary structure of rat ribosomal protein L38. Biochem Biophys Res Commun. 1991 Mar 15;175(2):551–555. doi: 10.1016/0006-291x(91)91600-h. [DOI] [PubMed] [Google Scholar]
- Lin A., McNally J., Wool I. G. The primary structure of rat liver ribosomal protein L39. J Biol Chem. 1984 Jan 10;259(1):487–490. [PubMed] [Google Scholar]
- Madjar J. J., Arpin M., Buisson M., Reboud J. P. Spot position of rat liver ribosomal proteins by four different two-dimensional electrophoreses in polyacrylamide gel. Mol Gen Genet. 1979 Mar 20;171(2):121–134. doi: 10.1007/BF00269998. [DOI] [PubMed] [Google Scholar]
- Monia B. P., Ecker D. J., Jonnalagadda S., Marsh J., Gotlib L., Butt T. R., Crooke S. T. Gene synthesis, expression, and processing of human ubiquitin carboxyl extension proteins. J Biol Chem. 1989 Mar 5;264(7):4093–4103. [PubMed] [Google Scholar]
- Ozkaynak E., Finley D., Solomon M. J., Varshavsky A. The yeast ubiquitin genes: a family of natural gene fusions. EMBO J. 1987 May;6(5):1429–1439. doi: 10.1002/j.1460-2075.1987.tb02384.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Redman K. L., Rechsteiner M. Extended reading frame of a ubiquitin gene encodes a stable, conserved, basic protein. J Biol Chem. 1988 Apr 5;263(10):4926–4931. [PubMed] [Google Scholar]
- Redman K. L., Rechsteiner M. Identification of the long ubiquitin extension as ribosomal protein S27a. Nature. 1989 Mar 30;338(6214):438–440. doi: 10.1038/338438a0. [DOI] [PubMed] [Google Scholar]
- Redman K. L. The smaller protein formed as a ubiquitin fusion in Drosophila is processed from ubiquitin and found on the 60S ribosomal subunit. Insect Biochem Mol Biol. 1994 Feb;24(2):191–201. doi: 10.1016/0965-1748(94)90085-x. [DOI] [PubMed] [Google Scholar]
- Sherton C. C., Wool I. G. Two-dimensional polyacrylamide gel electrophoresis of eukaryotic ribosomal proteins. Methods Enzymol. 1974;30:506–526. doi: 10.1016/0076-6879(74)30051-1. [DOI] [PubMed] [Google Scholar]
- St John T., Gallatin W. M., Siegelman M., Smith H. T., Fried V. A., Weissman I. L. Expression cloning of a lymphocyte homing receptor cDNA: ubiquitin is the reactive species. Science. 1986 Feb 21;231(4740):845–850. doi: 10.1126/science.3003914. [DOI] [PubMed] [Google Scholar]
- Tanaka T., Aoyama Y., Chan Y. L., Wool I. G. The primary structure of rat ribosomal protein L37a. Eur J Biochem. 1989 Jul 15;183(1):15–18. doi: 10.1111/j.1432-1033.1989.tb14889.x. [DOI] [PubMed] [Google Scholar]
- Wool I. G., Chan Y. L., Glück A., Suzuki K. The primary structure of rat ribosomal proteins P0, P1, and P2 and a proposal for a uniform nomenclature for mammalian and yeast ribosomal proteins. Biochimie. 1991 Jul-Aug;73(7-8):861–870. doi: 10.1016/0300-9084(91)90127-m. [DOI] [PubMed] [Google Scholar]
- Xu L., He G. P., Li A., Ro H. S. Molecular characterization of the mouse ribosomal protein S24 multigene family: a uniquely expressed intron-containing gene with cell-specific expression of three alternatively spliced mRNAs. Nucleic Acids Res. 1994 Feb 25;22(4):646–655. doi: 10.1093/nar/22.4.646. [DOI] [PMC free article] [PubMed] [Google Scholar]