Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Apr 1;315(Pt 1):57–63. doi: 10.1042/bj3150057

Overexpression of neuronal nitric oxide synthase in insect cells reveals requirement of haem for tetrahydrobiopterin binding.

B M List 1, P Klatt 1, E R Werner 1, K Schmidt 1, B Mayer 1
PMCID: PMC1217196  PMID: 8670132

Abstract

Nitric oxide synthase (NOS) catalyses the conversion of L-arginine into L-citrulline and nitric oxide. Recently we have developed a method for expression of recombinant rat brain NOS in baculovirus-infected Sf9 cells and purification of the enzymically active enzyme [Harteneck, Klatt, Schmidt and Mayer (1994) Biochem J. 304, 683-686]. To study how biosynthetic manipulation of the NOS cofactors haem, FAD/FMN, and tetrahydrobiopterin (H4biopterin) affects the properties of the isolated enzyme, Sf9 cells were infected in the absence and presence of haemin chloride (4 microg/ml), riboflavin (0.1.mM), and the inhibitor of H4biopterin biosynthesis 2,4-diamino-6-hydroxypyrimidine (10 mM). In the absence of haemin, NOS was expressed to a very high level but remained predominantly insoluble. Purification of the soluble fraction of the expressed protein showed that it had poor activity (0.35 micromol of citrulline x mg(-1) x min(-1)) and was haem-deficient (0.37 equiv. per monomer). Supplementing the culture medium with haemin resulted in pronounced solubilization of the expressed enzyme, which had a specific activity of approximately 1 micromol of citrulline x mg(-1) x min(-1) and contained 0.95 equiv. of haem per monomer under these conditions. Unexpectedly, the amount of H(4) biopterin endogenously present in the different NOS preparations positively correlated with the amount of enzyme-bound haem (y = 0.066+0.430x; r = 0.998). Radioligand binding experiments demonstrated that haem-deficient enzyme preparations containing 30-40% of the holoenzyme bound only approximately 40% of H4biopterin as compared with haem-saturated controls. These results suggest that the prosthetic haem group is essentially involved in the correct folding of NOS that is a requisite for solubilization of the protein and tight binding of H4biopterin.

Full Text

The Full Text of this article is available as a PDF (449.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abu-Soud H. M., Stuehr D. J. Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10769–10772. doi: 10.1073/pnas.90.22.10769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abu-Soud H. M., Yoho L. L., Stuehr D. J. Calmodulin controls neuronal nitric-oxide synthase by a dual mechanism. Activation of intra- and interdomain electron transfer. J Biol Chem. 1994 Dec 23;269(51):32047–32050. [PubMed] [Google Scholar]
  3. Asseffa A., Smith S. J., Nagata K., Gillette J., Gelboin H. V., Gonzalez F. J. Novel exogenous heme-dependent expression of mammalian cytochrome P450 using baculovirus. Arch Biochem Biophys. 1989 Nov 1;274(2):481–490. doi: 10.1016/0003-9861(89)90461-x. [DOI] [PubMed] [Google Scholar]
  4. Baek K. J., Thiel B. A., Lucas S., Stuehr D. J. Macrophage nitric oxide synthase subunits. Purification, characterization, and role of prosthetic groups and substrate in regulating their association into a dimeric enzyme. J Biol Chem. 1993 Oct 5;268(28):21120–21129. [PubMed] [Google Scholar]
  5. Berry E. A., Trumpower B. L. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal Biochem. 1987 Feb 15;161(1):1–15. doi: 10.1016/0003-2697(87)90643-9. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Bredt D. S., Ferris C. D., Snyder S. H. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J Biol Chem. 1992 Jun 5;267(16):10976–10981. [PubMed] [Google Scholar]
  8. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  9. Bredt D. S., Snyder S. H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990 Jan;87(2):682–685. doi: 10.1073/pnas.87.2.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brunner F., Kukovetz W. R. Radioligand binding to muscarinic receptors of bovine aortic endothelial cells. Br J Pharmacol. 1991 Feb;102(2):373–380. doi: 10.1111/j.1476-5381.1991.tb12181.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ghosh D. K., Stuehr D. J. Macrophage NO synthase: characterization of isolated oxygenase and reductase domains reveals a head-to-head subunit interaction. Biochemistry. 1995 Jan 24;34(3):801–807. doi: 10.1021/bi00003a013. [DOI] [PubMed] [Google Scholar]
  12. Gonzalez F. J., Kimura S., Tamura S., Gelboin H. V. Expression of mammalian cytochrome P450 using baculovirus. Methods Enzymol. 1991;206:93–99. doi: 10.1016/0076-6879(91)06080-m. [DOI] [PubMed] [Google Scholar]
  13. Griffith O. W., Stuehr D. J. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol. 1995;57:707–736. doi: 10.1146/annurev.ph.57.030195.003423. [DOI] [PubMed] [Google Scholar]
  14. Hart R. A., Kallio P. T., Bailey J. E. Effect of biosynthetic manipulation of heme on insolubility of Vitreoscilla hemoglobin in Escherichia coli. Appl Environ Microbiol. 1994 Jul;60(7):2431–2437. doi: 10.1128/aem.60.7.2431-2437.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harteneck C., Klatt P., Schmidt K., Mayer B. Expression of rat brain nitric oxide synthase in baculovirus-infected insect cells and characterization of the purified enzyme. Biochem J. 1994 Dec 15;304(Pt 3):683–686. doi: 10.1042/bj3040683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hevel J. M., Marletta M. A. Macrophage nitric oxide synthase: relationship between enzyme-bound tetrahydrobiopterin and synthase activity. Biochemistry. 1992 Aug 11;31(31):7160–7165. doi: 10.1021/bi00146a019. [DOI] [PubMed] [Google Scholar]
  17. Kindt J. T., Woods A., Martin B. M., Cotter R. J., Osawa Y. Covalent alteration of the prosthetic heme of human hemoglobin by BrCCl3. Cross-linking of heme to cysteine residue 93. J Biol Chem. 1992 May 5;267(13):8739–8743. [PubMed] [Google Scholar]
  18. Klatt P., Heinzel B., John M., Kastner M., Böhme E., Mayer B. Ca2+/calmodulin-dependent cytochrome c reductase activity of brain nitric oxide synthase. J Biol Chem. 1992 Jun 5;267(16):11374–11378. [PubMed] [Google Scholar]
  19. Klatt P., Schmid M., Leopold E., Schmidt K., Werner E. R., Mayer B. The pteridine binding site of brain nitric oxide synthase. Tetrahydrobiopterin binding kinetics, specificity, and allosteric interaction with the substrate domain. J Biol Chem. 1994 May 13;269(19):13861–13866. [PubMed] [Google Scholar]
  20. Klatt P., Schmidt K., Brunner F., Mayer B. Inhibitors of brain nitric oxide synthase. Binding kinetics, metabolism, and enzyme inactivation. J Biol Chem. 1994 Jan 21;269(3):1674–1680. [PubMed] [Google Scholar]
  21. Klatt P., Schmidt K., Mayer B. Brain nitric oxide synthase is a haemoprotein. Biochem J. 1992 Nov 15;288(Pt 1):15–17. doi: 10.1042/bj2880015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Klatt P., Schmidt K., Uray G., Mayer B. Multiple catalytic functions of brain nitric oxide synthase. Biochemical characterization, cofactor-requirement, and the role of N omega-hydroxy-L-arginine as an intermediate. J Biol Chem. 1993 Jul 15;268(20):14781–14787. [PubMed] [Google Scholar]
  23. Kwon N. S., Nathan C. F., Stuehr D. J. Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages. J Biol Chem. 1989 Dec 5;264(34):20496–20501. [PubMed] [Google Scholar]
  24. Marletta M. A. Nitric oxide synthase structure and mechanism. J Biol Chem. 1993 Jun 15;268(17):12231–12234. [PubMed] [Google Scholar]
  25. Masters B. S. Nitric oxide synthases: why so complex? Annu Rev Nutr. 1994;14:131–145. doi: 10.1146/annurev.nu.14.070194.001023. [DOI] [PubMed] [Google Scholar]
  26. Mayer B., John M., Böhme E. Purification of a Ca2+/calmodulin-dependent nitric oxide synthase from porcine cerebellum. Cofactor-role of tetrahydrobiopterin. FEBS Lett. 1990 Dec 17;277(1-2):215–219. doi: 10.1016/0014-5793(90)80848-d. [DOI] [PubMed] [Google Scholar]
  27. Mayer B., John M., Heinzel B., Werner E. R., Wachter H., Schultz G., Böhme E. Brain nitric oxide synthase is a biopterin- and flavin-containing multi-functional oxido-reductase. FEBS Lett. 1991 Aug 19;288(1-2):187–191. doi: 10.1016/0014-5793(91)81031-3. [DOI] [PubMed] [Google Scholar]
  28. Mayer B., Klatt P., Werner E. R., Schmidt K. Molecular mechanisms of inhibition of porcine brain nitric oxide synthase by the antinociceptive drug 7-nitro-indazole. Neuropharmacology. 1994 Nov;33(11):1253–1259. doi: 10.1016/0028-3908(94)90024-8. [DOI] [PubMed] [Google Scholar]
  29. Mayer B., Werner E. R. In search of a function for tetrahydrobiopterin in the biosynthesis of nitric oxide. Naunyn Schmiedebergs Arch Pharmacol. 1995 May;351(5):453–463. doi: 10.1007/BF00171035. [DOI] [PubMed] [Google Scholar]
  30. McMillan K., Bredt D. S., Hirsch D. J., Snyder S. H., Clark J. E., Masters B. S. Cloned, expressed rat cerebellar nitric oxide synthase contains stoichiometric amounts of heme, which binds carbon monoxide. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11141–11145. doi: 10.1073/pnas.89.23.11141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McMillan K., Masters B. S. Prokaryotic expression of the heme- and flavin-binding domains of rat neuronal nitric oxide synthase as distinct polypeptides: identification of the heme-binding proximal thiolate ligand as cysteine-415. Biochemistry. 1995 Mar 21;34(11):3686–3693. doi: 10.1021/bi00011a025. [DOI] [PubMed] [Google Scholar]
  32. Nathan C., Xie Q. W. Regulation of biosynthesis of nitric oxide. J Biol Chem. 1994 May 13;269(19):13725–13728. [PubMed] [Google Scholar]
  33. Olken N. M., Osawa Y., Marletta M. A. Characterization of the inactivation of nitric oxide synthase by NG-methyl-L-arginine: evidence for heme loss. Biochemistry. 1994 Dec 13;33(49):14784–14791. doi: 10.1021/bi00253a017. [DOI] [PubMed] [Google Scholar]
  34. Pinnix I. B., Guzman G. S., Bonkovsky H. L., Zaki S. R., Kinkade J. M., Jr The post-translational processing of myeloperoxidase is regulated by the availability of heme. Arch Biochem Biophys. 1994 Aug 1;312(2):447–458. doi: 10.1006/abbi.1994.1331. [DOI] [PubMed] [Google Scholar]
  35. Richards M. K., Marletta M. A. Characterization of neuronal nitric oxide synthase and a C415H mutant, purified from a baculovirus overexpression system. Biochemistry. 1994 Dec 13;33(49):14723–14732. doi: 10.1021/bi00253a010. [DOI] [PubMed] [Google Scholar]
  36. Riveros-Moreno V., Heffernan B., Torres B., Chubb A., Charles I., Moncada S. Purification to homogeneity and characterisation of rat brain recombinant nitric oxide synthase. Eur J Biochem. 1995 May 15;230(1):52–57. doi: 10.1111/j.1432-1033.1995.tb20533.x. [DOI] [PubMed] [Google Scholar]
  37. Schmidt H. H., Pollock J. S., Nakane M., Gorsky L. D., Förstermann U., Murad F. Purification of a soluble isoform of guanylyl cyclase-activating-factor synthase. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):365–369. doi: 10.1073/pnas.88.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schmidt H. H., Smith R. M., Nakane M., Murad F. Ca2+/calmodulin-dependent NO synthase type I: a biopteroflavoprotein with Ca2+/calmodulin-independent diaphorase and reductase activities. Biochemistry. 1992 Mar 31;31(12):3243–3249. doi: 10.1021/bi00127a028. [DOI] [PubMed] [Google Scholar]
  39. Seo H. G., Fujii J., Soejima H., Niikawa N., Taniguchi N. Heme requirement for production of active endothelial nitric oxide synthase in baculovirus-infected insect cells. Biochem Biophys Res Commun. 1995 Mar 8;208(1):10–18. doi: 10.1006/bbrc.1995.1298. [DOI] [PubMed] [Google Scholar]
  40. Sheta E. A., McMillan K., Masters B. S. Evidence for a bidomain structure of constitutive cerebellar nitric oxide synthase. J Biol Chem. 1994 May 27;269(21):15147–15153. [PubMed] [Google Scholar]
  41. Smith A. T., Santama N., Dacey S., Edwards M., Bray R. C., Thorneley R. N., Burke J. F. Expression of a synthetic gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca2+ and heme. J Biol Chem. 1990 Aug 5;265(22):13335–13343. [PubMed] [Google Scholar]
  42. Stuehr D. J., Ikeda-Saito M. Spectral characterization of brain and macrophage nitric oxide synthases. Cytochrome P-450-like hemeproteins that contain a flavin semiquinone radical. J Biol Chem. 1992 Oct 15;267(29):20547–20550. [PubMed] [Google Scholar]
  43. Tayeh M. A., Marletta M. A. Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. J Biol Chem. 1989 Nov 25;264(33):19654–19658. [PubMed] [Google Scholar]
  44. Wang J., Stuehr D. J., Rousseau D. L. Tetrahydrobiopterin-deficient nitric oxide synthase has a modified heme environment and forms a cytochrome P-420 analogue. Biochemistry. 1995 May 30;34(21):7080–7087. doi: 10.1021/bi00021a020. [DOI] [PubMed] [Google Scholar]
  45. Werner E. R., Schmid M., Werner-Felmayer G., Mayer B., Wachter H. Synthesis and characterization of 3H-labelled tetrahydrobiopterin. Biochem J. 1994 Nov 15;304(Pt 1):189–193. doi: 10.1042/bj3040189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Werner E. R., Werner-Felmayer G., Wachter H. Tetrahydrobiopterin and cytokines. Proc Soc Exp Biol Med. 1993 May;203(1):1–12. doi: 10.3181/00379727-203-43566a. [DOI] [PubMed] [Google Scholar]
  47. White K. A., Marletta M. A. Nitric oxide synthase is a cytochrome P-450 type hemoprotein. Biochemistry. 1992 Jul 28;31(29):6627–6631. doi: 10.1021/bi00144a001. [DOI] [PubMed] [Google Scholar]
  48. Yasukochi Y., Masters B. S. Some properties of a detergent-solubilized NADPH-cytochrome c(cytochrome P-450) reductase purified by biospecific affinity chromatography. J Biol Chem. 1976 Sep 10;251(17):5337–5344. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES